Loading…
Broadband Photocurrent Spectroscopy and Temperature Dependence of Band-gap of Few-Layer Indium Selenide
Understanding broadband photoconductive behaviour in two dimensional layered materials are important in order to utilize them for a variety of opto-electronic applications. Here we present our results of photocurrent spectroscopy measurements performed on few layer Indium Selenide (InSe) flakes. Tem...
Saved in:
Published in: | arXiv.org 2021-04 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding broadband photoconductive behaviour in two dimensional layered materials are important in order to utilize them for a variety of opto-electronic applications. Here we present our results of photocurrent spectroscopy measurements performed on few layer Indium Selenide (InSe) flakes. Temperature (T) dependent (40 K < T < 300 K) photocurrent spectroscopy was performed in order to estimate the band-gap energies E_g(T) of InSe at various temperatures. Our measurements indicate that room temperature E_g value for InSe flake was ~ 1.254 eV, which increased to a value of ~ 1.275 eV at low temperatures. The estimation of Debye temperatures by analysing the observed experimental variation of E_g as a function of T using several theoretical models is presented and discussed. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2104.04877 |