Loading…

Nonparametric density estimation over complicated domains

We propose a nonparametric method for density estimation over (possibly complicated) spatial domains. The method combines a likelihood approach with a regularization based on a differential operator. We demonstrate the good inferential properties of the method. Moreover, we develop an estimation pro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2021-04, Vol.83 (2), p.346-368
Main Authors: Ferraccioli, Federico, Arnone, Eleonora, Finos, Livio, Ramsay, James O., Sangalli, Laura M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3705-abfaa7a5729843b2322aa9b0ddc490b73550ef84648aa695132ccdd84cfe3e6e3
cites cdi_FETCH-LOGICAL-c3705-abfaa7a5729843b2322aa9b0ddc490b73550ef84648aa695132ccdd84cfe3e6e3
container_end_page 368
container_issue 2
container_start_page 346
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 83
creator Ferraccioli, Federico
Arnone, Eleonora
Finos, Livio
Ramsay, James O.
Sangalli, Laura M.
description We propose a nonparametric method for density estimation over (possibly complicated) spatial domains. The method combines a likelihood approach with a regularization based on a differential operator. We demonstrate the good inferential properties of the method. Moreover, we develop an estimation procedure based on advanced numerical techniques, and in particular making use of finite elements. This ensures high computational efficiency and enables great flexibility. The proposed method efficiently deals with data scattered over regions having complicated shapes, featuring complex boundaries, sharp concavities or holes. Moreover, it captures very well complicated signals having multiple modes with different directions and intensities of anisotropy. We show the comparative advantages of the proposed approach over state of the art methods, in simulation studies and in an application to the study of criminality in the city of Portland, Oregon.
doi_str_mv 10.1111/rssb.12415
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512588907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512588907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3705-abfaa7a5729843b2322aa9b0ddc490b73550ef84648aa695132ccdd84cfe3e6e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsbf8GAO2Fq3o-lFl9QFKyuQybJQEpnMiZTpf_e1HHt2dy7-O695x4ALhFcoKKblHOzQJgidgRmiHJRK8nlcekJV7WgCJ-Cs5w3sIgLMgPqJfaDSabzYwq2cr7PYdxXPo-hM2OIfRW_fKps7IZtsGb0rnKxM6HP5-CkNdvsL_7qHHw83L8vn-rV6-Pz8nZVWyIgq03TGiMME1hJShpMMDZGNdA5SxVsBGEM-lZSTqUxXDFEsLXOSWpbTzz3ZA6upr1Dip-7Ykxv4i715aTGDGEmpYKiUNcTZVPMOflWD6l8kPYaQX2IRh-i0b_RFBhN8HfY-v0_pH5br--mmR9B2Wbv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512588907</pqid></control><display><type>article</type><title>Nonparametric density estimation over complicated domains</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Alma/SFX Local Collection</source><creator>Ferraccioli, Federico ; Arnone, Eleonora ; Finos, Livio ; Ramsay, James O. ; Sangalli, Laura M.</creator><creatorcontrib>Ferraccioli, Federico ; Arnone, Eleonora ; Finos, Livio ; Ramsay, James O. ; Sangalli, Laura M.</creatorcontrib><description>We propose a nonparametric method for density estimation over (possibly complicated) spatial domains. The method combines a likelihood approach with a regularization based on a differential operator. We demonstrate the good inferential properties of the method. Moreover, we develop an estimation procedure based on advanced numerical techniques, and in particular making use of finite elements. This ensures high computational efficiency and enables great flexibility. The proposed method efficiently deals with data scattered over regions having complicated shapes, featuring complex boundaries, sharp concavities or holes. Moreover, it captures very well complicated signals having multiple modes with different directions and intensities of anisotropy. We show the comparative advantages of the proposed approach over state of the art methods, in simulation studies and in an application to the study of criminality in the city of Portland, Oregon.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12415</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Anisotropy ; Criminality ; Density ; Differential equations ; differential regularization ; Domains ; finite elements ; Flexibility ; functional data analysis ; heat diffusion density estimator ; Mathematical analysis ; Nonparametric statistics ; Operators (mathematics) ; Regression analysis ; Regularization ; Simulation ; Statistical methods ; Statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2021-04, Vol.83 (2), p.346-368</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Royal Statistical Society.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3705-abfaa7a5729843b2322aa9b0ddc490b73550ef84648aa695132ccdd84cfe3e6e3</citedby><cites>FETCH-LOGICAL-c3705-abfaa7a5729843b2322aa9b0ddc490b73550ef84648aa695132ccdd84cfe3e6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Ferraccioli, Federico</creatorcontrib><creatorcontrib>Arnone, Eleonora</creatorcontrib><creatorcontrib>Finos, Livio</creatorcontrib><creatorcontrib>Ramsay, James O.</creatorcontrib><creatorcontrib>Sangalli, Laura M.</creatorcontrib><title>Nonparametric density estimation over complicated domains</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>We propose a nonparametric method for density estimation over (possibly complicated) spatial domains. The method combines a likelihood approach with a regularization based on a differential operator. We demonstrate the good inferential properties of the method. Moreover, we develop an estimation procedure based on advanced numerical techniques, and in particular making use of finite elements. This ensures high computational efficiency and enables great flexibility. The proposed method efficiently deals with data scattered over regions having complicated shapes, featuring complex boundaries, sharp concavities or holes. Moreover, it captures very well complicated signals having multiple modes with different directions and intensities of anisotropy. We show the comparative advantages of the proposed approach over state of the art methods, in simulation studies and in an application to the study of criminality in the city of Portland, Oregon.</description><subject>Anisotropy</subject><subject>Criminality</subject><subject>Density</subject><subject>Differential equations</subject><subject>differential regularization</subject><subject>Domains</subject><subject>finite elements</subject><subject>Flexibility</subject><subject>functional data analysis</subject><subject>heat diffusion density estimator</subject><subject>Mathematical analysis</subject><subject>Nonparametric statistics</subject><subject>Operators (mathematics)</subject><subject>Regression analysis</subject><subject>Regularization</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>8BJ</sourceid><recordid>eNp9kEtLAzEUhYMoWKsbf8GAO2Fq3o-lFl9QFKyuQybJQEpnMiZTpf_e1HHt2dy7-O695x4ALhFcoKKblHOzQJgidgRmiHJRK8nlcekJV7WgCJ-Cs5w3sIgLMgPqJfaDSabzYwq2cr7PYdxXPo-hM2OIfRW_fKps7IZtsGb0rnKxM6HP5-CkNdvsL_7qHHw83L8vn-rV6-Pz8nZVWyIgq03TGiMME1hJShpMMDZGNdA5SxVsBGEM-lZSTqUxXDFEsLXOSWpbTzz3ZA6upr1Dip-7Ykxv4i715aTGDGEmpYKiUNcTZVPMOflWD6l8kPYaQX2IRh-i0b_RFBhN8HfY-v0_pH5br--mmR9B2Wbv</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Ferraccioli, Federico</creator><creator>Arnone, Eleonora</creator><creator>Finos, Livio</creator><creator>Ramsay, James O.</creator><creator>Sangalli, Laura M.</creator><general>Oxford University Press</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202104</creationdate><title>Nonparametric density estimation over complicated domains</title><author>Ferraccioli, Federico ; Arnone, Eleonora ; Finos, Livio ; Ramsay, James O. ; Sangalli, Laura M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3705-abfaa7a5729843b2322aa9b0ddc490b73550ef84648aa695132ccdd84cfe3e6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Criminality</topic><topic>Density</topic><topic>Differential equations</topic><topic>differential regularization</topic><topic>Domains</topic><topic>finite elements</topic><topic>Flexibility</topic><topic>functional data analysis</topic><topic>heat diffusion density estimator</topic><topic>Mathematical analysis</topic><topic>Nonparametric statistics</topic><topic>Operators (mathematics)</topic><topic>Regression analysis</topic><topic>Regularization</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferraccioli, Federico</creatorcontrib><creatorcontrib>Arnone, Eleonora</creatorcontrib><creatorcontrib>Finos, Livio</creatorcontrib><creatorcontrib>Ramsay, James O.</creatorcontrib><creatorcontrib>Sangalli, Laura M.</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferraccioli, Federico</au><au>Arnone, Eleonora</au><au>Finos, Livio</au><au>Ramsay, James O.</au><au>Sangalli, Laura M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric density estimation over complicated domains</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2021-04</date><risdate>2021</risdate><volume>83</volume><issue>2</issue><spage>346</spage><epage>368</epage><pages>346-368</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>We propose a nonparametric method for density estimation over (possibly complicated) spatial domains. The method combines a likelihood approach with a regularization based on a differential operator. We demonstrate the good inferential properties of the method. Moreover, we develop an estimation procedure based on advanced numerical techniques, and in particular making use of finite elements. This ensures high computational efficiency and enables great flexibility. The proposed method efficiently deals with data scattered over regions having complicated shapes, featuring complex boundaries, sharp concavities or holes. Moreover, it captures very well complicated signals having multiple modes with different directions and intensities of anisotropy. We show the comparative advantages of the proposed approach over state of the art methods, in simulation studies and in an application to the study of criminality in the city of Portland, Oregon.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssb.12415</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2021-04, Vol.83 (2), p.346-368
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_journals_2512588907
source EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); Alma/SFX Local Collection
subjects Anisotropy
Criminality
Density
Differential equations
differential regularization
Domains
finite elements
Flexibility
functional data analysis
heat diffusion density estimator
Mathematical analysis
Nonparametric statistics
Operators (mathematics)
Regression analysis
Regularization
Simulation
Statistical methods
Statistics
title Nonparametric density estimation over complicated domains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20density%20estimation%20over%20complicated%20domains&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Ferraccioli,%20Federico&rft.date=2021-04&rft.volume=83&rft.issue=2&rft.spage=346&rft.epage=368&rft.pages=346-368&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12415&rft_dat=%3Cproquest_cross%3E2512588907%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3705-abfaa7a5729843b2322aa9b0ddc490b73550ef84648aa695132ccdd84cfe3e6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2512588907&rft_id=info:pmid/&rfr_iscdi=true