Loading…

Magnetohydrodynamics fluid flow passing through a sliced magnetic sphere influenced by mixed convection

We consider mathematical modelling of magnetohydrodynamics viscous fluid flow when passing a magnetic sliced sphere in which the effect of mixed convection included. We therefore develop dimensional governing equations from the law of the mass conservation, momentum conservation, and energy equation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-03, Vol.1836 (1), p.12042
Main Author: Widodo, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider mathematical modelling of magnetohydrodynamics viscous fluid flow when passing a magnetic sliced sphere in which the effect of mixed convection included. We therefore develop dimensional governing equations from the law of the mass conservation, momentum conservation, and energy equation. The governing equations further are converted into non-dimensional equations by using non-dimensional variables. Further, by using similarity equations in which stream function is included, we obtain non-linear system equation. This non-linear equation is solved numerically by using Keller-Box scheme. We further take numerical computation to analyze velocity and temperature on front of the lower stagnation of the magnetic sliced sphere when various parameters are included, such as Prandtl number, sliced angle, magnetic parameter and mixed convection parameter. We obtain numerical solution that when magnetic parameter increases then profile of fluid velocity decreases but the profile of fluid temperature increases. The mixed convection parameter increases then the velocity profile of the fluid increases but the temperature profile of the fluid decreases. The Prandtl number parameter increases then both of the velocity and temperature profiles of the fluid decreases, respectively. The sliced angle parameter increases then the fluid velocity profile increases but the fluid temperature profile decreases.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1836/1/012042