Loading…

Logistic Regression Models in Predicting Heart Disease

This paper predicts the risk of suffering from heart disease among the elderly by exploring the feasibility of using logistic regression models. Through the technology of data mining, the main pathogenic factors of heart disease were found, and the incidence of heart disease was predicted by using t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-01, Vol.1769 (1), p.12024
Main Authors: Zhang, Yingjie, Diao, Lijuan, Ma, Linlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593
cites cdi_FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593
container_end_page
container_issue 1
container_start_page 12024
container_title Journal of physics. Conference series
container_volume 1769
creator Zhang, Yingjie
Diao, Lijuan
Ma, Linlin
description This paper predicts the risk of suffering from heart disease among the elderly by exploring the feasibility of using logistic regression models. Through the technology of data mining, the main pathogenic factors of heart disease were found, and the incidence of heart disease was predicted by using the regression model. The accuracy of logistic regression model was compared with other explored algorithms, and I found that the logistic regression model was worthy of research in the field of heart disease prediction.
doi_str_mv 10.1088/1742-6596/1769/1/012024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512952631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512952631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouK5-BgOeazP51-Qoq-4KFUX0HNI0WbKs7Zp0D357Wyo7l3kwj5k3P4RugdwDUaqEitNCCi1HJXUJJQFKKD9Di9Pk_KSVukRXOe8IYWNVCyTrfhvzEB3-8Nvkc459h1_71u8zjh1-T76NbojdFm-8TQN-jNnb7K_RRbD77G_--xJ9PT99rjZF_bZ-WT3UhWNjhkIyyiQJjRBtxQlnlkmuNLWttEp4gEACqzSnzjeEURuUc4Q3FETQVAWh2RLdzXsPqf85-jyYXX9M3XjSUAFUCyoZjK5qdrnU55x8MIcUv236NUDMBMlM75sJhZkgGTAzJPYHl9VX6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512952631</pqid></control><display><type>article</type><title>Logistic Regression Models in Predicting Heart Disease</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Yingjie ; Diao, Lijuan ; Ma, Linlin</creator><creatorcontrib>Zhang, Yingjie ; Diao, Lijuan ; Ma, Linlin</creatorcontrib><description>This paper predicts the risk of suffering from heart disease among the elderly by exploring the feasibility of using logistic regression models. Through the technology of data mining, the main pathogenic factors of heart disease were found, and the incidence of heart disease was predicted by using the regression model. The accuracy of logistic regression model was compared with other explored algorithms, and I found that the logistic regression model was worthy of research in the field of heart disease prediction.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1769/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Cardiovascular disease ; Data mining ; Heart ; Heart diseases ; Model accuracy ; Physics ; Regression models</subject><ispartof>Journal of physics. Conference series, 2021-01, Vol.1769 (1), p.12024</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593</citedby><cites>FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2512952631?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Diao, Lijuan</creatorcontrib><creatorcontrib>Ma, Linlin</creatorcontrib><title>Logistic Regression Models in Predicting Heart Disease</title><title>Journal of physics. Conference series</title><description>This paper predicts the risk of suffering from heart disease among the elderly by exploring the feasibility of using logistic regression models. Through the technology of data mining, the main pathogenic factors of heart disease were found, and the incidence of heart disease was predicted by using the regression model. The accuracy of logistic regression model was compared with other explored algorithms, and I found that the logistic regression model was worthy of research in the field of heart disease prediction.</description><subject>Algorithms</subject><subject>Cardiovascular disease</subject><subject>Data mining</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Model accuracy</subject><subject>Physics</subject><subject>Regression models</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9kE9LxDAQxYMouK5-BgOeazP51-Qoq-4KFUX0HNI0WbKs7Zp0D357Wyo7l3kwj5k3P4RugdwDUaqEitNCCi1HJXUJJQFKKD9Di9Pk_KSVukRXOe8IYWNVCyTrfhvzEB3-8Nvkc459h1_71u8zjh1-T76NbojdFm-8TQN-jNnb7K_RRbD77G_--xJ9PT99rjZF_bZ-WT3UhWNjhkIyyiQJjRBtxQlnlkmuNLWttEp4gEACqzSnzjeEURuUc4Q3FETQVAWh2RLdzXsPqf85-jyYXX9M3XjSUAFUCyoZjK5qdrnU55x8MIcUv236NUDMBMlM75sJhZkgGTAzJPYHl9VX6A</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhang, Yingjie</creator><creator>Diao, Lijuan</creator><creator>Ma, Linlin</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210101</creationdate><title>Logistic Regression Models in Predicting Heart Disease</title><author>Zhang, Yingjie ; Diao, Lijuan ; Ma, Linlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cardiovascular disease</topic><topic>Data mining</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Model accuracy</topic><topic>Physics</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Diao, Lijuan</creatorcontrib><creatorcontrib>Ma, Linlin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yingjie</au><au>Diao, Lijuan</au><au>Ma, Linlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logistic Regression Models in Predicting Heart Disease</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>1769</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This paper predicts the risk of suffering from heart disease among the elderly by exploring the feasibility of using logistic regression models. Through the technology of data mining, the main pathogenic factors of heart disease were found, and the incidence of heart disease was predicted by using the regression model. The accuracy of logistic regression model was compared with other explored algorithms, and I found that the logistic regression model was worthy of research in the field of heart disease prediction.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1769/1/012024</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-01, Vol.1769 (1), p.12024
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2512952631
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Algorithms
Cardiovascular disease
Data mining
Heart
Heart diseases
Model accuracy
Physics
Regression models
title Logistic Regression Models in Predicting Heart Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logistic%20Regression%20Models%20in%20Predicting%20Heart%20Disease&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhang,%20Yingjie&rft.date=2021-01-01&rft.volume=1769&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1769/1/012024&rft_dat=%3Cproquest_cross%3E2512952631%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2512952631&rft_id=info:pmid/&rfr_iscdi=true