Loading…
Logistic Regression Models in Predicting Heart Disease
This paper predicts the risk of suffering from heart disease among the elderly by exploring the feasibility of using logistic regression models. Through the technology of data mining, the main pathogenic factors of heart disease were found, and the incidence of heart disease was predicted by using t...
Saved in:
Published in: | Journal of physics. Conference series 2021-01, Vol.1769 (1), p.12024 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593 |
---|---|
cites | cdi_FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593 |
container_end_page | |
container_issue | 1 |
container_start_page | 12024 |
container_title | Journal of physics. Conference series |
container_volume | 1769 |
creator | Zhang, Yingjie Diao, Lijuan Ma, Linlin |
description | This paper predicts the risk of suffering from heart disease among the elderly by exploring the feasibility of using logistic regression models. Through the technology of data mining, the main pathogenic factors of heart disease were found, and the incidence of heart disease was predicted by using the regression model. The accuracy of logistic regression model was compared with other explored algorithms, and I found that the logistic regression model was worthy of research in the field of heart disease prediction. |
doi_str_mv | 10.1088/1742-6596/1769/1/012024 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512952631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512952631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouK5-BgOeazP51-Qoq-4KFUX0HNI0WbKs7Zp0D357Wyo7l3kwj5k3P4RugdwDUaqEitNCCi1HJXUJJQFKKD9Di9Pk_KSVukRXOe8IYWNVCyTrfhvzEB3-8Nvkc459h1_71u8zjh1-T76NbojdFm-8TQN-jNnb7K_RRbD77G_--xJ9PT99rjZF_bZ-WT3UhWNjhkIyyiQJjRBtxQlnlkmuNLWttEp4gEACqzSnzjeEURuUc4Q3FETQVAWh2RLdzXsPqf85-jyYXX9M3XjSUAFUCyoZjK5qdrnU55x8MIcUv236NUDMBMlM75sJhZkgGTAzJPYHl9VX6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512952631</pqid></control><display><type>article</type><title>Logistic Regression Models in Predicting Heart Disease</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Yingjie ; Diao, Lijuan ; Ma, Linlin</creator><creatorcontrib>Zhang, Yingjie ; Diao, Lijuan ; Ma, Linlin</creatorcontrib><description>This paper predicts the risk of suffering from heart disease among the elderly by exploring the feasibility of using logistic regression models. Through the technology of data mining, the main pathogenic factors of heart disease were found, and the incidence of heart disease was predicted by using the regression model. The accuracy of logistic regression model was compared with other explored algorithms, and I found that the logistic regression model was worthy of research in the field of heart disease prediction.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1769/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Cardiovascular disease ; Data mining ; Heart ; Heart diseases ; Model accuracy ; Physics ; Regression models</subject><ispartof>Journal of physics. Conference series, 2021-01, Vol.1769 (1), p.12024</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593</citedby><cites>FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2512952631?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Diao, Lijuan</creatorcontrib><creatorcontrib>Ma, Linlin</creatorcontrib><title>Logistic Regression Models in Predicting Heart Disease</title><title>Journal of physics. Conference series</title><description>This paper predicts the risk of suffering from heart disease among the elderly by exploring the feasibility of using logistic regression models. Through the technology of data mining, the main pathogenic factors of heart disease were found, and the incidence of heart disease was predicted by using the regression model. The accuracy of logistic regression model was compared with other explored algorithms, and I found that the logistic regression model was worthy of research in the field of heart disease prediction.</description><subject>Algorithms</subject><subject>Cardiovascular disease</subject><subject>Data mining</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Model accuracy</subject><subject>Physics</subject><subject>Regression models</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9kE9LxDAQxYMouK5-BgOeazP51-Qoq-4KFUX0HNI0WbKs7Zp0D357Wyo7l3kwj5k3P4RugdwDUaqEitNCCi1HJXUJJQFKKD9Di9Pk_KSVukRXOe8IYWNVCyTrfhvzEB3-8Nvkc459h1_71u8zjh1-T76NbojdFm-8TQN-jNnb7K_RRbD77G_--xJ9PT99rjZF_bZ-WT3UhWNjhkIyyiQJjRBtxQlnlkmuNLWttEp4gEACqzSnzjeEURuUc4Q3FETQVAWh2RLdzXsPqf85-jyYXX9M3XjSUAFUCyoZjK5qdrnU55x8MIcUv236NUDMBMlM75sJhZkgGTAzJPYHl9VX6A</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhang, Yingjie</creator><creator>Diao, Lijuan</creator><creator>Ma, Linlin</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210101</creationdate><title>Logistic Regression Models in Predicting Heart Disease</title><author>Zhang, Yingjie ; Diao, Lijuan ; Ma, Linlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cardiovascular disease</topic><topic>Data mining</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Model accuracy</topic><topic>Physics</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Diao, Lijuan</creatorcontrib><creatorcontrib>Ma, Linlin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yingjie</au><au>Diao, Lijuan</au><au>Ma, Linlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logistic Regression Models in Predicting Heart Disease</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>1769</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This paper predicts the risk of suffering from heart disease among the elderly by exploring the feasibility of using logistic regression models. Through the technology of data mining, the main pathogenic factors of heart disease were found, and the incidence of heart disease was predicted by using the regression model. The accuracy of logistic regression model was compared with other explored algorithms, and I found that the logistic regression model was worthy of research in the field of heart disease prediction.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1769/1/012024</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-01, Vol.1769 (1), p.12024 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2512952631 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Algorithms Cardiovascular disease Data mining Heart Heart diseases Model accuracy Physics Regression models |
title | Logistic Regression Models in Predicting Heart Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logistic%20Regression%20Models%20in%20Predicting%20Heart%20Disease&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhang,%20Yingjie&rft.date=2021-01-01&rft.volume=1769&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1769/1/012024&rft_dat=%3Cproquest_cross%3E2512952631%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3024-632360fb55d74043a364892ad6a85e11f0f37942ceb032af8cc04b215f928f593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2512952631&rft_id=info:pmid/&rfr_iscdi=true |