Loading…

Hydrodynamic forces on tubular cylinders fitted with sacrificial anodes – numerical analysis

In offshore engineering, the design of effective marine platforms compatible with the offshore environmental condition is a challenging task, especially accurate estimation of hydrodynamic coefficients that affect the viscous forces. Practically, the well-known Morison’s equation is often adopted by...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2021-03, Vol.1101 (1), p.12002
Main Authors: Al-Yacouby, A M, Talhah, M H, Liew, M S, Danyaro, K U
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In offshore engineering, the design of effective marine platforms compatible with the offshore environmental condition is a challenging task, especially accurate estimation of hydrodynamic coefficients that affect the viscous forces. Practically, the well-known Morison’s equation is often adopted by designers to calculate wave loads on slender structures, where the values of drag and inertia coefficients are selected as constant values based on the design code of practice’s recommendations. However, the mass and drag coefficients must be determined empirically based on specific met-ocean data for the operation location. Thus, the objective of this study is to evaluate the Hydrodynamic Forces on Circular Cylinders fitted with sacrificial anodes using empirical methods, and validate the results using Computational Fluid Dynamic (CFD). It is found that the major parameters that affect the drag and inertia coefficients are the water depth, wave heights, wave frequencies, the pipe diameters, and the presence of anode fittings.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/1101/1/012002