Loading…
Smart City Data Analysis via Visualization of Correlated Attribute Patterns
Urban conditions are monitored by a wide variety of sensors that measure several attributes, such as temperature and traffic volume. The correlations of sensors help to analyze and understand the urban conditions accurately. The correlated attribute pattern (CAP) mining discovers correlations among...
Saved in:
Published in: | arXiv.org 2021-04 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sasaki, Yuya Hori, Keizo Nishihara, Daiki Ohashi, Sora Wakuta, Yusuke Harada, Kei Onizuka, Makoto Arase, Yuki Shimojo, Shinji Doi, Kenji He Hongdi Zhong-Ren, Peng |
description | Urban conditions are monitored by a wide variety of sensors that measure several attributes, such as temperature and traffic volume. The correlations of sensors help to analyze and understand the urban conditions accurately. The correlated attribute pattern (CAP) mining discovers correlations among multiple attributes from the sets of sensors spatially close to each other and temporally correlated in their measurements. In this paper, we develop a visualization system for CAP mining and demonstrate analysis of smart city data. Our visualization system supports an intuitive understanding of mining results via sensor locations on maps and temporal changes of their measurements. In our demonstration scenarios, we provide four smart city datasets collected from China and Santander, Spain. We demonstrate that our system helps interactive analysis of smart city data. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2512958249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512958249</sourcerecordid><originalsourceid>FETCH-proquest_journals_25129582493</originalsourceid><addsrcrecordid>eNqNzLEKwjAQgOEgCBbtOxw4F9q00XYsVRFcBMW1nJhCSmw0dxHq0-vgAzj9y8c_EZHM8ywpCylnIibq0zSVq7VUKo_E4XRHz9AYHmGDjFAPaEcyBC-DcDEU0Jo3snEDuA4a5722yPoGNbM318Aajsis_UALMe3Qko5_nYvlbntu9snDu2fQxG3vgv_-qZUqk5UqZVHl_6kPAlo9PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512958249</pqid></control><display><type>article</type><title>Smart City Data Analysis via Visualization of Correlated Attribute Patterns</title><source>Publicly Available Content Database</source><creator>Sasaki, Yuya ; Hori, Keizo ; Nishihara, Daiki ; Ohashi, Sora ; Wakuta, Yusuke ; Harada, Kei ; Onizuka, Makoto ; Arase, Yuki ; Shimojo, Shinji ; Doi, Kenji ; He Hongdi ; Zhong-Ren, Peng</creator><creatorcontrib>Sasaki, Yuya ; Hori, Keizo ; Nishihara, Daiki ; Ohashi, Sora ; Wakuta, Yusuke ; Harada, Kei ; Onizuka, Makoto ; Arase, Yuki ; Shimojo, Shinji ; Doi, Kenji ; He Hongdi ; Zhong-Ren, Peng</creatorcontrib><description>Urban conditions are monitored by a wide variety of sensors that measure several attributes, such as temperature and traffic volume. The correlations of sensors help to analyze and understand the urban conditions accurately. The correlated attribute pattern (CAP) mining discovers correlations among multiple attributes from the sets of sensors spatially close to each other and temporally correlated in their measurements. In this paper, we develop a visualization system for CAP mining and demonstrate analysis of smart city data. Our visualization system supports an intuitive understanding of mining results via sensor locations on maps and temporal changes of their measurements. In our demonstration scenarios, we provide four smart city datasets collected from China and Santander, Spain. We demonstrate that our system helps interactive analysis of smart city data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data analysis ; Data mining ; Interactive systems ; Sensors ; Smart cities ; Traffic volume ; Visualization</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2512958249?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Sasaki, Yuya</creatorcontrib><creatorcontrib>Hori, Keizo</creatorcontrib><creatorcontrib>Nishihara, Daiki</creatorcontrib><creatorcontrib>Ohashi, Sora</creatorcontrib><creatorcontrib>Wakuta, Yusuke</creatorcontrib><creatorcontrib>Harada, Kei</creatorcontrib><creatorcontrib>Onizuka, Makoto</creatorcontrib><creatorcontrib>Arase, Yuki</creatorcontrib><creatorcontrib>Shimojo, Shinji</creatorcontrib><creatorcontrib>Doi, Kenji</creatorcontrib><creatorcontrib>He Hongdi</creatorcontrib><creatorcontrib>Zhong-Ren, Peng</creatorcontrib><title>Smart City Data Analysis via Visualization of Correlated Attribute Patterns</title><title>arXiv.org</title><description>Urban conditions are monitored by a wide variety of sensors that measure several attributes, such as temperature and traffic volume. The correlations of sensors help to analyze and understand the urban conditions accurately. The correlated attribute pattern (CAP) mining discovers correlations among multiple attributes from the sets of sensors spatially close to each other and temporally correlated in their measurements. In this paper, we develop a visualization system for CAP mining and demonstrate analysis of smart city data. Our visualization system supports an intuitive understanding of mining results via sensor locations on maps and temporal changes of their measurements. In our demonstration scenarios, we provide four smart city datasets collected from China and Santander, Spain. We demonstrate that our system helps interactive analysis of smart city data.</description><subject>Data analysis</subject><subject>Data mining</subject><subject>Interactive systems</subject><subject>Sensors</subject><subject>Smart cities</subject><subject>Traffic volume</subject><subject>Visualization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzLEKwjAQgOEgCBbtOxw4F9q00XYsVRFcBMW1nJhCSmw0dxHq0-vgAzj9y8c_EZHM8ywpCylnIibq0zSVq7VUKo_E4XRHz9AYHmGDjFAPaEcyBC-DcDEU0Jo3snEDuA4a5722yPoGNbM318Aajsis_UALMe3Qko5_nYvlbntu9snDu2fQxG3vgv_-qZUqk5UqZVHl_6kPAlo9PQ</recordid><startdate>20210414</startdate><enddate>20210414</enddate><creator>Sasaki, Yuya</creator><creator>Hori, Keizo</creator><creator>Nishihara, Daiki</creator><creator>Ohashi, Sora</creator><creator>Wakuta, Yusuke</creator><creator>Harada, Kei</creator><creator>Onizuka, Makoto</creator><creator>Arase, Yuki</creator><creator>Shimojo, Shinji</creator><creator>Doi, Kenji</creator><creator>He Hongdi</creator><creator>Zhong-Ren, Peng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210414</creationdate><title>Smart City Data Analysis via Visualization of Correlated Attribute Patterns</title><author>Sasaki, Yuya ; Hori, Keizo ; Nishihara, Daiki ; Ohashi, Sora ; Wakuta, Yusuke ; Harada, Kei ; Onizuka, Makoto ; Arase, Yuki ; Shimojo, Shinji ; Doi, Kenji ; He Hongdi ; Zhong-Ren, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25129582493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data analysis</topic><topic>Data mining</topic><topic>Interactive systems</topic><topic>Sensors</topic><topic>Smart cities</topic><topic>Traffic volume</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Sasaki, Yuya</creatorcontrib><creatorcontrib>Hori, Keizo</creatorcontrib><creatorcontrib>Nishihara, Daiki</creatorcontrib><creatorcontrib>Ohashi, Sora</creatorcontrib><creatorcontrib>Wakuta, Yusuke</creatorcontrib><creatorcontrib>Harada, Kei</creatorcontrib><creatorcontrib>Onizuka, Makoto</creatorcontrib><creatorcontrib>Arase, Yuki</creatorcontrib><creatorcontrib>Shimojo, Shinji</creatorcontrib><creatorcontrib>Doi, Kenji</creatorcontrib><creatorcontrib>He Hongdi</creatorcontrib><creatorcontrib>Zhong-Ren, Peng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasaki, Yuya</au><au>Hori, Keizo</au><au>Nishihara, Daiki</au><au>Ohashi, Sora</au><au>Wakuta, Yusuke</au><au>Harada, Kei</au><au>Onizuka, Makoto</au><au>Arase, Yuki</au><au>Shimojo, Shinji</au><au>Doi, Kenji</au><au>He Hongdi</au><au>Zhong-Ren, Peng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Smart City Data Analysis via Visualization of Correlated Attribute Patterns</atitle><jtitle>arXiv.org</jtitle><date>2021-04-14</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Urban conditions are monitored by a wide variety of sensors that measure several attributes, such as temperature and traffic volume. The correlations of sensors help to analyze and understand the urban conditions accurately. The correlated attribute pattern (CAP) mining discovers correlations among multiple attributes from the sets of sensors spatially close to each other and temporally correlated in their measurements. In this paper, we develop a visualization system for CAP mining and demonstrate analysis of smart city data. Our visualization system supports an intuitive understanding of mining results via sensor locations on maps and temporal changes of their measurements. In our demonstration scenarios, we provide four smart city datasets collected from China and Santander, Spain. We demonstrate that our system helps interactive analysis of smart city data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2512958249 |
source | Publicly Available Content Database |
subjects | Data analysis Data mining Interactive systems Sensors Smart cities Traffic volume Visualization |
title | Smart City Data Analysis via Visualization of Correlated Attribute Patterns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Smart%20City%20Data%20Analysis%20via%20Visualization%20of%20Correlated%20Attribute%20Patterns&rft.jtitle=arXiv.org&rft.au=Sasaki,%20Yuya&rft.date=2021-04-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2512958249%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25129582493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2512958249&rft_id=info:pmid/&rfr_iscdi=true |