Loading…

Smart City Data Analysis via Visualization of Correlated Attribute Patterns

Urban conditions are monitored by a wide variety of sensors that measure several attributes, such as temperature and traffic volume. The correlations of sensors help to analyze and understand the urban conditions accurately. The correlated attribute pattern (CAP) mining discovers correlations among...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-04
Main Authors: Sasaki, Yuya, Hori, Keizo, Nishihara, Daiki, Ohashi, Sora, Wakuta, Yusuke, Harada, Kei, Onizuka, Makoto, Arase, Yuki, Shimojo, Shinji, Doi, Kenji, He Hongdi, Zhong-Ren, Peng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sasaki, Yuya
Hori, Keizo
Nishihara, Daiki
Ohashi, Sora
Wakuta, Yusuke
Harada, Kei
Onizuka, Makoto
Arase, Yuki
Shimojo, Shinji
Doi, Kenji
He Hongdi
Zhong-Ren, Peng
description Urban conditions are monitored by a wide variety of sensors that measure several attributes, such as temperature and traffic volume. The correlations of sensors help to analyze and understand the urban conditions accurately. The correlated attribute pattern (CAP) mining discovers correlations among multiple attributes from the sets of sensors spatially close to each other and temporally correlated in their measurements. In this paper, we develop a visualization system for CAP mining and demonstrate analysis of smart city data. Our visualization system supports an intuitive understanding of mining results via sensor locations on maps and temporal changes of their measurements. In our demonstration scenarios, we provide four smart city datasets collected from China and Santander, Spain. We demonstrate that our system helps interactive analysis of smart city data.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2512958249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512958249</sourcerecordid><originalsourceid>FETCH-proquest_journals_25129582493</originalsourceid><addsrcrecordid>eNqNzLEKwjAQgOEgCBbtOxw4F9q00XYsVRFcBMW1nJhCSmw0dxHq0-vgAzj9y8c_EZHM8ywpCylnIibq0zSVq7VUKo_E4XRHz9AYHmGDjFAPaEcyBC-DcDEU0Jo3snEDuA4a5722yPoGNbM318Aajsis_UALMe3Qko5_nYvlbntu9snDu2fQxG3vgv_-qZUqk5UqZVHl_6kPAlo9PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512958249</pqid></control><display><type>article</type><title>Smart City Data Analysis via Visualization of Correlated Attribute Patterns</title><source>Publicly Available Content Database</source><creator>Sasaki, Yuya ; Hori, Keizo ; Nishihara, Daiki ; Ohashi, Sora ; Wakuta, Yusuke ; Harada, Kei ; Onizuka, Makoto ; Arase, Yuki ; Shimojo, Shinji ; Doi, Kenji ; He Hongdi ; Zhong-Ren, Peng</creator><creatorcontrib>Sasaki, Yuya ; Hori, Keizo ; Nishihara, Daiki ; Ohashi, Sora ; Wakuta, Yusuke ; Harada, Kei ; Onizuka, Makoto ; Arase, Yuki ; Shimojo, Shinji ; Doi, Kenji ; He Hongdi ; Zhong-Ren, Peng</creatorcontrib><description>Urban conditions are monitored by a wide variety of sensors that measure several attributes, such as temperature and traffic volume. The correlations of sensors help to analyze and understand the urban conditions accurately. The correlated attribute pattern (CAP) mining discovers correlations among multiple attributes from the sets of sensors spatially close to each other and temporally correlated in their measurements. In this paper, we develop a visualization system for CAP mining and demonstrate analysis of smart city data. Our visualization system supports an intuitive understanding of mining results via sensor locations on maps and temporal changes of their measurements. In our demonstration scenarios, we provide four smart city datasets collected from China and Santander, Spain. We demonstrate that our system helps interactive analysis of smart city data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data analysis ; Data mining ; Interactive systems ; Sensors ; Smart cities ; Traffic volume ; Visualization</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2512958249?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Sasaki, Yuya</creatorcontrib><creatorcontrib>Hori, Keizo</creatorcontrib><creatorcontrib>Nishihara, Daiki</creatorcontrib><creatorcontrib>Ohashi, Sora</creatorcontrib><creatorcontrib>Wakuta, Yusuke</creatorcontrib><creatorcontrib>Harada, Kei</creatorcontrib><creatorcontrib>Onizuka, Makoto</creatorcontrib><creatorcontrib>Arase, Yuki</creatorcontrib><creatorcontrib>Shimojo, Shinji</creatorcontrib><creatorcontrib>Doi, Kenji</creatorcontrib><creatorcontrib>He Hongdi</creatorcontrib><creatorcontrib>Zhong-Ren, Peng</creatorcontrib><title>Smart City Data Analysis via Visualization of Correlated Attribute Patterns</title><title>arXiv.org</title><description>Urban conditions are monitored by a wide variety of sensors that measure several attributes, such as temperature and traffic volume. The correlations of sensors help to analyze and understand the urban conditions accurately. The correlated attribute pattern (CAP) mining discovers correlations among multiple attributes from the sets of sensors spatially close to each other and temporally correlated in their measurements. In this paper, we develop a visualization system for CAP mining and demonstrate analysis of smart city data. Our visualization system supports an intuitive understanding of mining results via sensor locations on maps and temporal changes of their measurements. In our demonstration scenarios, we provide four smart city datasets collected from China and Santander, Spain. We demonstrate that our system helps interactive analysis of smart city data.</description><subject>Data analysis</subject><subject>Data mining</subject><subject>Interactive systems</subject><subject>Sensors</subject><subject>Smart cities</subject><subject>Traffic volume</subject><subject>Visualization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzLEKwjAQgOEgCBbtOxw4F9q00XYsVRFcBMW1nJhCSmw0dxHq0-vgAzj9y8c_EZHM8ywpCylnIibq0zSVq7VUKo_E4XRHz9AYHmGDjFAPaEcyBC-DcDEU0Jo3snEDuA4a5722yPoGNbM318Aajsis_UALMe3Qko5_nYvlbntu9snDu2fQxG3vgv_-qZUqk5UqZVHl_6kPAlo9PQ</recordid><startdate>20210414</startdate><enddate>20210414</enddate><creator>Sasaki, Yuya</creator><creator>Hori, Keizo</creator><creator>Nishihara, Daiki</creator><creator>Ohashi, Sora</creator><creator>Wakuta, Yusuke</creator><creator>Harada, Kei</creator><creator>Onizuka, Makoto</creator><creator>Arase, Yuki</creator><creator>Shimojo, Shinji</creator><creator>Doi, Kenji</creator><creator>He Hongdi</creator><creator>Zhong-Ren, Peng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210414</creationdate><title>Smart City Data Analysis via Visualization of Correlated Attribute Patterns</title><author>Sasaki, Yuya ; Hori, Keizo ; Nishihara, Daiki ; Ohashi, Sora ; Wakuta, Yusuke ; Harada, Kei ; Onizuka, Makoto ; Arase, Yuki ; Shimojo, Shinji ; Doi, Kenji ; He Hongdi ; Zhong-Ren, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25129582493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data analysis</topic><topic>Data mining</topic><topic>Interactive systems</topic><topic>Sensors</topic><topic>Smart cities</topic><topic>Traffic volume</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Sasaki, Yuya</creatorcontrib><creatorcontrib>Hori, Keizo</creatorcontrib><creatorcontrib>Nishihara, Daiki</creatorcontrib><creatorcontrib>Ohashi, Sora</creatorcontrib><creatorcontrib>Wakuta, Yusuke</creatorcontrib><creatorcontrib>Harada, Kei</creatorcontrib><creatorcontrib>Onizuka, Makoto</creatorcontrib><creatorcontrib>Arase, Yuki</creatorcontrib><creatorcontrib>Shimojo, Shinji</creatorcontrib><creatorcontrib>Doi, Kenji</creatorcontrib><creatorcontrib>He Hongdi</creatorcontrib><creatorcontrib>Zhong-Ren, Peng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasaki, Yuya</au><au>Hori, Keizo</au><au>Nishihara, Daiki</au><au>Ohashi, Sora</au><au>Wakuta, Yusuke</au><au>Harada, Kei</au><au>Onizuka, Makoto</au><au>Arase, Yuki</au><au>Shimojo, Shinji</au><au>Doi, Kenji</au><au>He Hongdi</au><au>Zhong-Ren, Peng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Smart City Data Analysis via Visualization of Correlated Attribute Patterns</atitle><jtitle>arXiv.org</jtitle><date>2021-04-14</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Urban conditions are monitored by a wide variety of sensors that measure several attributes, such as temperature and traffic volume. The correlations of sensors help to analyze and understand the urban conditions accurately. The correlated attribute pattern (CAP) mining discovers correlations among multiple attributes from the sets of sensors spatially close to each other and temporally correlated in their measurements. In this paper, we develop a visualization system for CAP mining and demonstrate analysis of smart city data. Our visualization system supports an intuitive understanding of mining results via sensor locations on maps and temporal changes of their measurements. In our demonstration scenarios, we provide four smart city datasets collected from China and Santander, Spain. We demonstrate that our system helps interactive analysis of smart city data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2512958249
source Publicly Available Content Database
subjects Data analysis
Data mining
Interactive systems
Sensors
Smart cities
Traffic volume
Visualization
title Smart City Data Analysis via Visualization of Correlated Attribute Patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Smart%20City%20Data%20Analysis%20via%20Visualization%20of%20Correlated%20Attribute%20Patterns&rft.jtitle=arXiv.org&rft.au=Sasaki,%20Yuya&rft.date=2021-04-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2512958249%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25129582493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2512958249&rft_id=info:pmid/&rfr_iscdi=true