Loading…

Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks

The results of numerical simulation of unsteady convective heat transfer of an electrically conductive liquid in a spherical layer (modeling the Earth’s liquid core) under boundary conditions for a temperature of the first kind and in the presence of internal (negative) heat sinks are presented. The...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Earth and environmental science 2021-03, Vol.666 (5), p.52048
Main Authors: Solovjev, S, Solovjeva, T S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1938-a0e82ed5333705120e30d652de1aaefc7c5380d83fde0dd1e7d8bedf99b1493
container_end_page
container_issue 5
container_start_page 52048
container_title IOP conference series. Earth and environmental science
container_volume 666
creator Solovjev, S
Solovjeva, T S
description The results of numerical simulation of unsteady convective heat transfer of an electrically conductive liquid in a spherical layer (modeling the Earth’s liquid core) under boundary conditions for a temperature of the first kind and in the presence of internal (negative) heat sinks are presented. The effect of internal heat sinks on the evolution of the structure of a liquid flow, temperature field, magnetic induction, and the distribution of Nusselt numbers in a strong magnetic field is investigated.
doi_str_mv 10.1088/1755-1315/666/5/052048
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512973919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512973919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1938-a0e82ed5333705120e30d652de1aaefc7c5380d83fde0dd1e7d8bedf99b1493</originalsourceid><addsrcrecordid>eNo9kFFrwjAQx8PYYM7tK4zAnrsmjWnSRxE3BWEPuucQmwtGa6JJi_jtZ-nw5e64-_Hn-CH0TsknJVLmVHCeUUZ5XpZlznPCCzKRD2h0PzzeZyKe0UtKe0JKMWHVCB3W7tg1unXB42Dxr08taHPFC9At3kTtk4WIncftDvDKnTtn8CxE6OF-Ndex3eGLu5Vp04SL9jVgGyJe-hai182QtHb-kF7Rk9VNgrf_Pkbrr_lmtshWP9_L2XSV1bRiMtMEZAGGM8YE4bQgwIgpeWGAag22FjVnkhjJrAFiDAVh5BaMraotnVRsjD6G1FMM5w5Sq_ah6z9JqrilVYJVtKfKgapjSCmCVafojjpeFSWq16p6Y6q3p25aFVeDVvYHLcFrLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512973919</pqid></control><display><type>article</type><title>Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks</title><source>Publicly Available Content Database</source><creator>Solovjev, S ; Solovjeva, T S</creator><creatorcontrib>Solovjev, S ; Solovjeva, T S</creatorcontrib><description>The results of numerical simulation of unsteady convective heat transfer of an electrically conductive liquid in a spherical layer (modeling the Earth’s liquid core) under boundary conditions for a temperature of the first kind and in the presence of internal (negative) heat sinks are presented. The effect of internal heat sinks on the evolution of the structure of a liquid flow, temperature field, magnetic induction, and the distribution of Nusselt numbers in a strong magnetic field is investigated.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/666/5/052048</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Boundary conditions ; Computational fluid dynamics ; Convective heat transfer ; Earth core ; Heat ; Heat sinks ; Heat transfer ; Liquid flow ; Magnetic fields ; Magnetic induction ; Mathematical models ; Sinkholes ; Temperature distribution</subject><ispartof>IOP conference series. Earth and environmental science, 2021-03, Vol.666 (5), p.52048</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1938-a0e82ed5333705120e30d652de1aaefc7c5380d83fde0dd1e7d8bedf99b1493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2512973919?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Solovjev, S</creatorcontrib><creatorcontrib>Solovjeva, T S</creatorcontrib><title>Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks</title><title>IOP conference series. Earth and environmental science</title><description>The results of numerical simulation of unsteady convective heat transfer of an electrically conductive liquid in a spherical layer (modeling the Earth’s liquid core) under boundary conditions for a temperature of the first kind and in the presence of internal (negative) heat sinks are presented. The effect of internal heat sinks on the evolution of the structure of a liquid flow, temperature field, magnetic induction, and the distribution of Nusselt numbers in a strong magnetic field is investigated.</description><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Convective heat transfer</subject><subject>Earth core</subject><subject>Heat</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Liquid flow</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Mathematical models</subject><subject>Sinkholes</subject><subject>Temperature distribution</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9kFFrwjAQx8PYYM7tK4zAnrsmjWnSRxE3BWEPuucQmwtGa6JJi_jtZ-nw5e64-_Hn-CH0TsknJVLmVHCeUUZ5XpZlznPCCzKRD2h0PzzeZyKe0UtKe0JKMWHVCB3W7tg1unXB42Dxr08taHPFC9At3kTtk4WIncftDvDKnTtn8CxE6OF-Ndex3eGLu5Vp04SL9jVgGyJe-hai182QtHb-kF7Rk9VNgrf_Pkbrr_lmtshWP9_L2XSV1bRiMtMEZAGGM8YE4bQgwIgpeWGAag22FjVnkhjJrAFiDAVh5BaMraotnVRsjD6G1FMM5w5Sq_ah6z9JqrilVYJVtKfKgapjSCmCVafojjpeFSWq16p6Y6q3p25aFVeDVvYHLcFrLQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Solovjev, S</creator><creator>Solovjeva, T S</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20210301</creationdate><title>Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks</title><author>Solovjev, S ; Solovjeva, T S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1938-a0e82ed5333705120e30d652de1aaefc7c5380d83fde0dd1e7d8bedf99b1493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Convective heat transfer</topic><topic>Earth core</topic><topic>Heat</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Liquid flow</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Mathematical models</topic><topic>Sinkholes</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solovjev, S</creatorcontrib><creatorcontrib>Solovjeva, T S</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solovjev, S</au><au>Solovjeva, T S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>666</volume><issue>5</issue><spage>52048</spage><pages>52048-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>The results of numerical simulation of unsteady convective heat transfer of an electrically conductive liquid in a spherical layer (modeling the Earth’s liquid core) under boundary conditions for a temperature of the first kind and in the presence of internal (negative) heat sinks are presented. The effect of internal heat sinks on the evolution of the structure of a liquid flow, temperature field, magnetic induction, and the distribution of Nusselt numbers in a strong magnetic field is investigated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/666/5/052048</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2021-03, Vol.666 (5), p.52048
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2512973919
source Publicly Available Content Database
subjects Boundary conditions
Computational fluid dynamics
Convective heat transfer
Earth core
Heat
Heat sinks
Heat transfer
Liquid flow
Magnetic fields
Magnetic induction
Mathematical models
Sinkholes
Temperature distribution
title Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Unsteady%20Heat%20Transfer%20in%20the%20Liquid%20Core%20of%20the%20Earth%20with%20Allowance%20for%20Internal%20Heat%20Sinks&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Solovjev,%20S&rft.date=2021-03-01&rft.volume=666&rft.issue=5&rft.spage=52048&rft.pages=52048-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/666/5/052048&rft_dat=%3Cproquest_cross%3E2512973919%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1938-a0e82ed5333705120e30d652de1aaefc7c5380d83fde0dd1e7d8bedf99b1493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2512973919&rft_id=info:pmid/&rfr_iscdi=true