Loading…
Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks
The results of numerical simulation of unsteady convective heat transfer of an electrically conductive liquid in a spherical layer (modeling the Earth’s liquid core) under boundary conditions for a temperature of the first kind and in the presence of internal (negative) heat sinks are presented. The...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2021-03, Vol.666 (5), p.52048 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1938-a0e82ed5333705120e30d652de1aaefc7c5380d83fde0dd1e7d8bedf99b1493 |
container_end_page | |
container_issue | 5 |
container_start_page | 52048 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 666 |
creator | Solovjev, S Solovjeva, T S |
description | The results of numerical simulation of unsteady convective heat transfer of an electrically conductive liquid in a spherical layer (modeling the Earth’s liquid core) under boundary conditions for a temperature of the first kind and in the presence of internal (negative) heat sinks are presented. The effect of internal heat sinks on the evolution of the structure of a liquid flow, temperature field, magnetic induction, and the distribution of Nusselt numbers in a strong magnetic field is investigated. |
doi_str_mv | 10.1088/1755-1315/666/5/052048 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512973919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512973919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1938-a0e82ed5333705120e30d652de1aaefc7c5380d83fde0dd1e7d8bedf99b1493</originalsourceid><addsrcrecordid>eNo9kFFrwjAQx8PYYM7tK4zAnrsmjWnSRxE3BWEPuucQmwtGa6JJi_jtZ-nw5e64-_Hn-CH0TsknJVLmVHCeUUZ5XpZlznPCCzKRD2h0PzzeZyKe0UtKe0JKMWHVCB3W7tg1unXB42Dxr08taHPFC9At3kTtk4WIncftDvDKnTtn8CxE6OF-Ndex3eGLu5Vp04SL9jVgGyJe-hai182QtHb-kF7Rk9VNgrf_Pkbrr_lmtshWP9_L2XSV1bRiMtMEZAGGM8YE4bQgwIgpeWGAag22FjVnkhjJrAFiDAVh5BaMraotnVRsjD6G1FMM5w5Sq_ah6z9JqrilVYJVtKfKgapjSCmCVafojjpeFSWq16p6Y6q3p25aFVeDVvYHLcFrLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512973919</pqid></control><display><type>article</type><title>Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks</title><source>Publicly Available Content Database</source><creator>Solovjev, S ; Solovjeva, T S</creator><creatorcontrib>Solovjev, S ; Solovjeva, T S</creatorcontrib><description>The results of numerical simulation of unsteady convective heat transfer of an electrically conductive liquid in a spherical layer (modeling the Earth’s liquid core) under boundary conditions for a temperature of the first kind and in the presence of internal (negative) heat sinks are presented. The effect of internal heat sinks on the evolution of the structure of a liquid flow, temperature field, magnetic induction, and the distribution of Nusselt numbers in a strong magnetic field is investigated.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/666/5/052048</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Boundary conditions ; Computational fluid dynamics ; Convective heat transfer ; Earth core ; Heat ; Heat sinks ; Heat transfer ; Liquid flow ; Magnetic fields ; Magnetic induction ; Mathematical models ; Sinkholes ; Temperature distribution</subject><ispartof>IOP conference series. Earth and environmental science, 2021-03, Vol.666 (5), p.52048</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1938-a0e82ed5333705120e30d652de1aaefc7c5380d83fde0dd1e7d8bedf99b1493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2512973919?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Solovjev, S</creatorcontrib><creatorcontrib>Solovjeva, T S</creatorcontrib><title>Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks</title><title>IOP conference series. Earth and environmental science</title><description>The results of numerical simulation of unsteady convective heat transfer of an electrically conductive liquid in a spherical layer (modeling the Earth’s liquid core) under boundary conditions for a temperature of the first kind and in the presence of internal (negative) heat sinks are presented. The effect of internal heat sinks on the evolution of the structure of a liquid flow, temperature field, magnetic induction, and the distribution of Nusselt numbers in a strong magnetic field is investigated.</description><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Convective heat transfer</subject><subject>Earth core</subject><subject>Heat</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Liquid flow</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Mathematical models</subject><subject>Sinkholes</subject><subject>Temperature distribution</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9kFFrwjAQx8PYYM7tK4zAnrsmjWnSRxE3BWEPuucQmwtGa6JJi_jtZ-nw5e64-_Hn-CH0TsknJVLmVHCeUUZ5XpZlznPCCzKRD2h0PzzeZyKe0UtKe0JKMWHVCB3W7tg1unXB42Dxr08taHPFC9At3kTtk4WIncftDvDKnTtn8CxE6OF-Ndex3eGLu5Vp04SL9jVgGyJe-hai182QtHb-kF7Rk9VNgrf_Pkbrr_lmtshWP9_L2XSV1bRiMtMEZAGGM8YE4bQgwIgpeWGAag22FjVnkhjJrAFiDAVh5BaMraotnVRsjD6G1FMM5w5Sq_ah6z9JqrilVYJVtKfKgapjSCmCVafojjpeFSWq16p6Y6q3p25aFVeDVvYHLcFrLQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Solovjev, S</creator><creator>Solovjeva, T S</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20210301</creationdate><title>Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks</title><author>Solovjev, S ; Solovjeva, T S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1938-a0e82ed5333705120e30d652de1aaefc7c5380d83fde0dd1e7d8bedf99b1493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Convective heat transfer</topic><topic>Earth core</topic><topic>Heat</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Liquid flow</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Mathematical models</topic><topic>Sinkholes</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solovjev, S</creatorcontrib><creatorcontrib>Solovjeva, T S</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solovjev, S</au><au>Solovjeva, T S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>666</volume><issue>5</issue><spage>52048</spage><pages>52048-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>The results of numerical simulation of unsteady convective heat transfer of an electrically conductive liquid in a spherical layer (modeling the Earth’s liquid core) under boundary conditions for a temperature of the first kind and in the presence of internal (negative) heat sinks are presented. The effect of internal heat sinks on the evolution of the structure of a liquid flow, temperature field, magnetic induction, and the distribution of Nusselt numbers in a strong magnetic field is investigated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/666/5/052048</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2021-03, Vol.666 (5), p.52048 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_2512973919 |
source | Publicly Available Content Database |
subjects | Boundary conditions Computational fluid dynamics Convective heat transfer Earth core Heat Heat sinks Heat transfer Liquid flow Magnetic fields Magnetic induction Mathematical models Sinkholes Temperature distribution |
title | Simulation of Unsteady Heat Transfer in the Liquid Core of the Earth with Allowance for Internal Heat Sinks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Unsteady%20Heat%20Transfer%20in%20the%20Liquid%20Core%20of%20the%20Earth%20with%20Allowance%20for%20Internal%20Heat%20Sinks&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Solovjev,%20S&rft.date=2021-03-01&rft.volume=666&rft.issue=5&rft.spage=52048&rft.pages=52048-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/666/5/052048&rft_dat=%3Cproquest_cross%3E2512973919%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1938-a0e82ed5333705120e30d652de1aaefc7c5380d83fde0dd1e7d8bedf99b1493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2512973919&rft_id=info:pmid/&rfr_iscdi=true |