Loading…
Nonlinear radial envelope evolution equations and energetic particle transport in tokamak plasmas
This work provides a general description of the self-consistent energetic particle phase space transport in burning plasmas, based on nonlinear gyrokinetic theory. The self consistency is ensured by the evolution equations of the Alfvénic fluctuations by means of nonlinear radial envelope evolution...
Saved in:
Published in: | Journal of physics. Conference series 2021-02, Vol.1785 (1), p.12005 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work provides a general description of the self-consistent energetic particle phase space transport in burning plasmas, based on nonlinear gyrokinetic theory. The self consistency is ensured by the evolution equations of the Alfvénic fluctuations by means of nonlinear radial envelope evolution equations, while energetic particle fluxes in the phase space are explicitly constructed from long-lived phase space zonal structures, which are undamped by collisionless processes. As a result, this work provides a viable route to computing fluctuation induced energetic particle transport on long time scales in realistic tokamak plasmas. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1785/1/012005 |