Loading…

Spin glass to paramagnetic transition and triple point in Spherical SK model

This paper studies spin glass to paramagnetic transition in the Spherical Sherrington-Kirkpatrick model with ferromagnetic Curie-Weiss interaction with coupling constant \(J\) and inverse temperature \(\beta\). The disorder of the system is represented by a general Wigner matrix. We confirm a conjec...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-08
Main Authors: Johnstone, Iain M, Klochkov, Yegor, Onatski, Alexei, Pavlyshyn, Damian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Johnstone, Iain M
Klochkov, Yegor
Onatski, Alexei
Pavlyshyn, Damian
description This paper studies spin glass to paramagnetic transition in the Spherical Sherrington-Kirkpatrick model with ferromagnetic Curie-Weiss interaction with coupling constant \(J\) and inverse temperature \(\beta\). The disorder of the system is represented by a general Wigner matrix. We confirm a conjecture of \cite{Baik2016} and \cite{Baik2017}, that the critical window of temperatures for this transition is \(\beta = 1 + bN^{-1/3} \sqrt{\log N}\) with \(b\in\mathbb{R}\). The limiting distribution of the scaled free energy is Gaussian for negative \(b\) and a weighted linear combination of independent Gaussian and Tracy-Widom components for positive \(b\). In the special case where the Wigner matrix is from the Gaussian Orthogonal or Unitary Ensemble, we describe the triple point transition between spin glass, paramagnetic, and ferromagnetic regimes in a critical window for \((\beta, J)\) around the triple point \((1,1)\): the Tracy-Widom component is replaced by the one parameter family of deformations described by Bloemendal and Virag, \cite{BloVirI}.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2513410277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513410277</sourcerecordid><originalsourceid>FETCH-proquest_journals_25134102773</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRYMgWLR3GHBdSCetdS-KoLu6L4ONNSVNYia9v114AFefx3t_JTJUqiyOFeJG5MyjlBIPDda1ysS9DcbBYIkZkodAkSYanE7mCSmSY5OMd0CuX9AEqyF44xIspza8dTRPstDeYPK9tjuxfpFlnf92K_aX8-N0LUL0n1lz6kY_R7eoDutSVaXEplH_VV9Mwz1N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513410277</pqid></control><display><type>article</type><title>Spin glass to paramagnetic transition and triple point in Spherical SK model</title><source>Publicly Available Content (ProQuest)</source><creator>Johnstone, Iain M ; Klochkov, Yegor ; Onatski, Alexei ; Pavlyshyn, Damian</creator><creatorcontrib>Johnstone, Iain M ; Klochkov, Yegor ; Onatski, Alexei ; Pavlyshyn, Damian</creatorcontrib><description>This paper studies spin glass to paramagnetic transition in the Spherical Sherrington-Kirkpatrick model with ferromagnetic Curie-Weiss interaction with coupling constant \(J\) and inverse temperature \(\beta\). The disorder of the system is represented by a general Wigner matrix. We confirm a conjecture of \cite{Baik2016} and \cite{Baik2017}, that the critical window of temperatures for this transition is \(\beta = 1 + bN^{-1/3} \sqrt{\log N}\) with \(b\in\mathbb{R}\). The limiting distribution of the scaled free energy is Gaussian for negative \(b\) and a weighted linear combination of independent Gaussian and Tracy-Widom components for positive \(b\). In the special case where the Wigner matrix is from the Gaussian Orthogonal or Unitary Ensemble, we describe the triple point transition between spin glass, paramagnetic, and ferromagnetic regimes in a critical window for \((\beta, J)\) around the triple point \((1,1)\): the Tracy-Widom component is replaced by the one parameter family of deformations described by Bloemendal and Virag, \cite{BloVirI}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Constraining ; Critical temperature ; Energy distribution ; Ferromagnetism ; Free energy ; Model testing ; Normal distribution ; Spin glasses</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2513410277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Johnstone, Iain M</creatorcontrib><creatorcontrib>Klochkov, Yegor</creatorcontrib><creatorcontrib>Onatski, Alexei</creatorcontrib><creatorcontrib>Pavlyshyn, Damian</creatorcontrib><title>Spin glass to paramagnetic transition and triple point in Spherical SK model</title><title>arXiv.org</title><description>This paper studies spin glass to paramagnetic transition in the Spherical Sherrington-Kirkpatrick model with ferromagnetic Curie-Weiss interaction with coupling constant \(J\) and inverse temperature \(\beta\). The disorder of the system is represented by a general Wigner matrix. We confirm a conjecture of \cite{Baik2016} and \cite{Baik2017}, that the critical window of temperatures for this transition is \(\beta = 1 + bN^{-1/3} \sqrt{\log N}\) with \(b\in\mathbb{R}\). The limiting distribution of the scaled free energy is Gaussian for negative \(b\) and a weighted linear combination of independent Gaussian and Tracy-Widom components for positive \(b\). In the special case where the Wigner matrix is from the Gaussian Orthogonal or Unitary Ensemble, we describe the triple point transition between spin glass, paramagnetic, and ferromagnetic regimes in a critical window for \((\beta, J)\) around the triple point \((1,1)\): the Tracy-Widom component is replaced by the one parameter family of deformations described by Bloemendal and Virag, \cite{BloVirI}.</description><subject>Constraining</subject><subject>Critical temperature</subject><subject>Energy distribution</subject><subject>Ferromagnetism</subject><subject>Free energy</subject><subject>Model testing</subject><subject>Normal distribution</subject><subject>Spin glasses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi0EKwjAQRYMgWLR3GHBdSCetdS-KoLu6L4ONNSVNYia9v114AFefx3t_JTJUqiyOFeJG5MyjlBIPDda1ysS9DcbBYIkZkodAkSYanE7mCSmSY5OMd0CuX9AEqyF44xIspza8dTRPstDeYPK9tjuxfpFlnf92K_aX8-N0LUL0n1lz6kY_R7eoDutSVaXEplH_VV9Mwz1N</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Johnstone, Iain M</creator><creator>Klochkov, Yegor</creator><creator>Onatski, Alexei</creator><creator>Pavlyshyn, Damian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240823</creationdate><title>Spin glass to paramagnetic transition and triple point in Spherical SK model</title><author>Johnstone, Iain M ; Klochkov, Yegor ; Onatski, Alexei ; Pavlyshyn, Damian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25134102773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constraining</topic><topic>Critical temperature</topic><topic>Energy distribution</topic><topic>Ferromagnetism</topic><topic>Free energy</topic><topic>Model testing</topic><topic>Normal distribution</topic><topic>Spin glasses</topic><toplevel>online_resources</toplevel><creatorcontrib>Johnstone, Iain M</creatorcontrib><creatorcontrib>Klochkov, Yegor</creatorcontrib><creatorcontrib>Onatski, Alexei</creatorcontrib><creatorcontrib>Pavlyshyn, Damian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnstone, Iain M</au><au>Klochkov, Yegor</au><au>Onatski, Alexei</au><au>Pavlyshyn, Damian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spin glass to paramagnetic transition and triple point in Spherical SK model</atitle><jtitle>arXiv.org</jtitle><date>2024-08-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper studies spin glass to paramagnetic transition in the Spherical Sherrington-Kirkpatrick model with ferromagnetic Curie-Weiss interaction with coupling constant \(J\) and inverse temperature \(\beta\). The disorder of the system is represented by a general Wigner matrix. We confirm a conjecture of \cite{Baik2016} and \cite{Baik2017}, that the critical window of temperatures for this transition is \(\beta = 1 + bN^{-1/3} \sqrt{\log N}\) with \(b\in\mathbb{R}\). The limiting distribution of the scaled free energy is Gaussian for negative \(b\) and a weighted linear combination of independent Gaussian and Tracy-Widom components for positive \(b\). In the special case where the Wigner matrix is from the Gaussian Orthogonal or Unitary Ensemble, we describe the triple point transition between spin glass, paramagnetic, and ferromagnetic regimes in a critical window for \((\beta, J)\) around the triple point \((1,1)\): the Tracy-Widom component is replaced by the one parameter family of deformations described by Bloemendal and Virag, \cite{BloVirI}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2513410277
source Publicly Available Content (ProQuest)
subjects Constraining
Critical temperature
Energy distribution
Ferromagnetism
Free energy
Model testing
Normal distribution
Spin glasses
title Spin glass to paramagnetic transition and triple point in Spherical SK model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spin%20glass%20to%20paramagnetic%20transition%20and%20triple%20point%20in%20Spherical%20SK%20model&rft.jtitle=arXiv.org&rft.au=Johnstone,%20Iain%20M&rft.date=2024-08-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2513410277%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25134102773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2513410277&rft_id=info:pmid/&rfr_iscdi=true