Loading…

New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system

In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcell...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2015-01, Vol.205 (1), p.216-239
Main Authors: Garcia de la Garma, Jesus, Fernandez‐Garcia, Nieves, Bardisi, Enas, Pallol, Beatriz, Asensio‐Rubio, Jose Salvador, Bru, Roque, Olmos, Enrique
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5537-ae380ea9ac2e9afdc09f8a6be8f80b6cb4beb3fab31235ea3f131d59c1c553303
cites cdi_FETCH-LOGICAL-c5537-ae380ea9ac2e9afdc09f8a6be8f80b6cb4beb3fab31235ea3f131d59c1c553303
container_end_page 239
container_issue 1
container_start_page 216
container_title The New phytologist
container_volume 205
creator Garcia de la Garma, Jesus
Fernandez‐Garcia, Nieves
Bardisi, Enas
Pallol, Beatriz
Asensio‐Rubio, Jose Salvador
Bru, Roque
Olmos, Enrique
description In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY‐2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt‐acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt‐acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt‐acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt‐acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt‐acclimated cells.
doi_str_mv 10.1111/nph.12997
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2513890391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.205.1.216</jstor_id><sourcerecordid>newphytologist.205.1.216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5537-ae380ea9ac2e9afdc09f8a6be8f80b6cb4beb3fab31235ea3f131d59c1c553303</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EosPAghcAS6xYpPXPxInZoQooUlWQoBI7y3GuZzwkdrA9HeZheFecTtsdeHO9-M65R_cg9JKSU1remZ82p5RJ2TxCC7oSsmopbx6jBSGsrcRK_DhBz1LaEkJkLdhTdMJq2jZMyAX6cwV77Hxy601O5ZMDngbtM056yFgbM7hRZxf8O5w3gGMYIOFg8Q0kZwbAOWprnfnp_Bpr3-MI2mR3Azj8PqzB4zSBcUVSFng9DDPmPB5dDmYTfB-dvpXN3uD7MMLYRe0Bp0PKMD5HT6weEry4m0t0_fHD9_OL6vLLp8_n7y8rU9e8qTTwloCW2jCQ2vaGSNtq0UFrW9IJ06066LjVHaeM16C5pZz2tTR01nPCl-jN0XeK4dcOUlbbsIslcFLlVLyVhEv6P4oK1shWzPASvT1SJoaUIlg1xXLDeFCUqLkuVepSt3UV9tWd464boX8g7_spwNkR2LsBDv92UldfL-4tq6Nim3KIDwoP-2lzyGEIa1eCM1IrqhgVhX995K0OSq-jS-r6GyO0JmTOwAT_C7KWvFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627986251</pqid></control><display><type>article</type><title>New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Garcia de la Garma, Jesus ; Fernandez‐Garcia, Nieves ; Bardisi, Enas ; Pallol, Beatriz ; Asensio‐Rubio, Jose Salvador ; Bru, Roque ; Olmos, Enrique</creator><creatorcontrib>Garcia de la Garma, Jesus ; Fernandez‐Garcia, Nieves ; Bardisi, Enas ; Pallol, Beatriz ; Asensio‐Rubio, Jose Salvador ; Bru, Roque ; Olmos, Enrique</creatorcontrib><description>In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY‐2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt‐acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt‐acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt‐acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt‐acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt‐acclimated cells.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12997</identifier><identifier>PMID: 25187269</identifier><language>eng</language><publisher>England: Academic Press</publisher><subject>Abscisic acid ; Abscisic Acid - metabolism ; Acclimation ; Acclimatization ; Acclimatization - drug effects ; Apoptosis - drug effects ; Apoptosis - genetics ; Caspases - metabolism ; Cell death ; Cell growth ; Cell Line ; Cell lines ; Cell nucleus ; Cells ; Chaperones ; Cytoplasm ; endomembrane system ; Endoplasmic reticulum ; Fluorescence ; Gene Expression Regulation, Plant - drug effects ; Glutathione - metabolism ; Golgi apparatus ; Hydrogen Peroxide - metabolism ; Image contrast ; Intracellular Membranes - drug effects ; Intracellular Membranes - metabolism ; Intracellular Membranes - ultrastructure ; Malondialdehyde - metabolism ; Metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Molecular modelling ; Multidisciplinary research ; Nicotiana - cytology ; Nicotiana - genetics ; Nicotiana - metabolism ; Nicotiana - ultrastructure ; Nicotiana tabacum ; Oxygen ; physiological transport ; Plant cells ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Proline ; Proline - metabolism ; Protein folding ; Proteins ; Proteome - metabolism ; Proteomics ; Reactive oxygen species ; reactive oxygen species (ROS) ; Reactive Oxygen Species - metabolism ; Salt ; salt acclimation ; Salt Tolerance ; Salts ; Signal Transduction - drug effects ; Signaling ; Sodium ; Sodium - metabolism ; Sodium chloride ; Sodium Chloride - pharmacology ; stress response ; Subcellular Fractions - drug effects ; Subcellular Fractions - metabolism ; Tobacco ; Transcriptome - genetics ; transcriptomics ; Transport Vesicles - drug effects ; Transport Vesicles - metabolism ; Transport Vesicles - ultrastructure ; unfolded protein response ; Vacuoles ; vesicle trafficking</subject><ispartof>The New phytologist, 2015-01, Vol.205 (1), p.216-239</ispartof><rights>2015 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust.</rights><rights>Copyright © 2014 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5537-ae380ea9ac2e9afdc09f8a6be8f80b6cb4beb3fab31235ea3f131d59c1c553303</citedby><cites>FETCH-LOGICAL-c5537-ae380ea9ac2e9afdc09f8a6be8f80b6cb4beb3fab31235ea3f131d59c1c553303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.205.1.216$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.205.1.216$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25187269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia de la Garma, Jesus</creatorcontrib><creatorcontrib>Fernandez‐Garcia, Nieves</creatorcontrib><creatorcontrib>Bardisi, Enas</creatorcontrib><creatorcontrib>Pallol, Beatriz</creatorcontrib><creatorcontrib>Asensio‐Rubio, Jose Salvador</creatorcontrib><creatorcontrib>Bru, Roque</creatorcontrib><creatorcontrib>Olmos, Enrique</creatorcontrib><title>New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY‐2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt‐acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt‐acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt‐acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt‐acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt‐acclimated cells.</description><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Acclimatization - drug effects</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - genetics</subject><subject>Caspases - metabolism</subject><subject>Cell death</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell nucleus</subject><subject>Cells</subject><subject>Chaperones</subject><subject>Cytoplasm</subject><subject>endomembrane system</subject><subject>Endoplasmic reticulum</subject><subject>Fluorescence</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Glutathione - metabolism</subject><subject>Golgi apparatus</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Image contrast</subject><subject>Intracellular Membranes - drug effects</subject><subject>Intracellular Membranes - metabolism</subject><subject>Intracellular Membranes - ultrastructure</subject><subject>Malondialdehyde - metabolism</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Molecular modelling</subject><subject>Multidisciplinary research</subject><subject>Nicotiana - cytology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana - ultrastructure</subject><subject>Nicotiana tabacum</subject><subject>Oxygen</subject><subject>physiological transport</subject><subject>Plant cells</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Proline</subject><subject>Proline - metabolism</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Reactive oxygen species</subject><subject>reactive oxygen species (ROS)</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Salt</subject><subject>salt acclimation</subject><subject>Salt Tolerance</subject><subject>Salts</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Sodium</subject><subject>Sodium - metabolism</subject><subject>Sodium chloride</subject><subject>Sodium Chloride - pharmacology</subject><subject>stress response</subject><subject>Subcellular Fractions - drug effects</subject><subject>Subcellular Fractions - metabolism</subject><subject>Tobacco</subject><subject>Transcriptome - genetics</subject><subject>transcriptomics</subject><subject>Transport Vesicles - drug effects</subject><subject>Transport Vesicles - metabolism</subject><subject>Transport Vesicles - ultrastructure</subject><subject>unfolded protein response</subject><subject>Vacuoles</subject><subject>vesicle trafficking</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EosPAghcAS6xYpPXPxInZoQooUlWQoBI7y3GuZzwkdrA9HeZheFecTtsdeHO9-M65R_cg9JKSU1remZ82p5RJ2TxCC7oSsmopbx6jBSGsrcRK_DhBz1LaEkJkLdhTdMJq2jZMyAX6cwV77Hxy601O5ZMDngbtM056yFgbM7hRZxf8O5w3gGMYIOFg8Q0kZwbAOWprnfnp_Bpr3-MI2mR3Azj8PqzB4zSBcUVSFng9DDPmPB5dDmYTfB-dvpXN3uD7MMLYRe0Bp0PKMD5HT6weEry4m0t0_fHD9_OL6vLLp8_n7y8rU9e8qTTwloCW2jCQ2vaGSNtq0UFrW9IJ06066LjVHaeM16C5pZz2tTR01nPCl-jN0XeK4dcOUlbbsIslcFLlVLyVhEv6P4oK1shWzPASvT1SJoaUIlg1xXLDeFCUqLkuVepSt3UV9tWd464boX8g7_spwNkR2LsBDv92UldfL-4tq6Nim3KIDwoP-2lzyGEIa1eCM1IrqhgVhX995K0OSq-jS-r6GyO0JmTOwAT_C7KWvFs</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Garcia de la Garma, Jesus</creator><creator>Fernandez‐Garcia, Nieves</creator><creator>Bardisi, Enas</creator><creator>Pallol, Beatriz</creator><creator>Asensio‐Rubio, Jose Salvador</creator><creator>Bru, Roque</creator><creator>Olmos, Enrique</creator><general>Academic Press</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201501</creationdate><title>New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system</title><author>Garcia de la Garma, Jesus ; Fernandez‐Garcia, Nieves ; Bardisi, Enas ; Pallol, Beatriz ; Asensio‐Rubio, Jose Salvador ; Bru, Roque ; Olmos, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5537-ae380ea9ac2e9afdc09f8a6be8f80b6cb4beb3fab31235ea3f131d59c1c553303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Acclimatization - drug effects</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - genetics</topic><topic>Caspases - metabolism</topic><topic>Cell death</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell nucleus</topic><topic>Cells</topic><topic>Chaperones</topic><topic>Cytoplasm</topic><topic>endomembrane system</topic><topic>Endoplasmic reticulum</topic><topic>Fluorescence</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Glutathione - metabolism</topic><topic>Golgi apparatus</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Image contrast</topic><topic>Intracellular Membranes - drug effects</topic><topic>Intracellular Membranes - metabolism</topic><topic>Intracellular Membranes - ultrastructure</topic><topic>Malondialdehyde - metabolism</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Molecular modelling</topic><topic>Multidisciplinary research</topic><topic>Nicotiana - cytology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana - ultrastructure</topic><topic>Nicotiana tabacum</topic><topic>Oxygen</topic><topic>physiological transport</topic><topic>Plant cells</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Proline</topic><topic>Proline - metabolism</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Reactive oxygen species</topic><topic>reactive oxygen species (ROS)</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Salt</topic><topic>salt acclimation</topic><topic>Salt Tolerance</topic><topic>Salts</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Sodium</topic><topic>Sodium - metabolism</topic><topic>Sodium chloride</topic><topic>Sodium Chloride - pharmacology</topic><topic>stress response</topic><topic>Subcellular Fractions - drug effects</topic><topic>Subcellular Fractions - metabolism</topic><topic>Tobacco</topic><topic>Transcriptome - genetics</topic><topic>transcriptomics</topic><topic>Transport Vesicles - drug effects</topic><topic>Transport Vesicles - metabolism</topic><topic>Transport Vesicles - ultrastructure</topic><topic>unfolded protein response</topic><topic>Vacuoles</topic><topic>vesicle trafficking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia de la Garma, Jesus</creatorcontrib><creatorcontrib>Fernandez‐Garcia, Nieves</creatorcontrib><creatorcontrib>Bardisi, Enas</creatorcontrib><creatorcontrib>Pallol, Beatriz</creatorcontrib><creatorcontrib>Asensio‐Rubio, Jose Salvador</creatorcontrib><creatorcontrib>Bru, Roque</creatorcontrib><creatorcontrib>Olmos, Enrique</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia de la Garma, Jesus</au><au>Fernandez‐Garcia, Nieves</au><au>Bardisi, Enas</au><au>Pallol, Beatriz</au><au>Asensio‐Rubio, Jose Salvador</au><au>Bru, Roque</au><au>Olmos, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2015-01</date><risdate>2015</risdate><volume>205</volume><issue>1</issue><spage>216</spage><epage>239</epage><pages>216-239</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY‐2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt‐acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt‐acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt‐acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt‐acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt‐acclimated cells.</abstract><cop>England</cop><pub>Academic Press</pub><pmid>25187269</pmid><doi>10.1111/nph.12997</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2015-01, Vol.205 (1), p.216-239
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_journals_2513890391
source JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects Abscisic acid
Abscisic Acid - metabolism
Acclimation
Acclimatization
Acclimatization - drug effects
Apoptosis - drug effects
Apoptosis - genetics
Caspases - metabolism
Cell death
Cell growth
Cell Line
Cell lines
Cell nucleus
Cells
Chaperones
Cytoplasm
endomembrane system
Endoplasmic reticulum
Fluorescence
Gene Expression Regulation, Plant - drug effects
Glutathione - metabolism
Golgi apparatus
Hydrogen Peroxide - metabolism
Image contrast
Intracellular Membranes - drug effects
Intracellular Membranes - metabolism
Intracellular Membranes - ultrastructure
Malondialdehyde - metabolism
Metabolism
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - ultrastructure
Molecular modelling
Multidisciplinary research
Nicotiana - cytology
Nicotiana - genetics
Nicotiana - metabolism
Nicotiana - ultrastructure
Nicotiana tabacum
Oxygen
physiological transport
Plant cells
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Proline
Proline - metabolism
Protein folding
Proteins
Proteome - metabolism
Proteomics
Reactive oxygen species
reactive oxygen species (ROS)
Reactive Oxygen Species - metabolism
Salt
salt acclimation
Salt Tolerance
Salts
Signal Transduction - drug effects
Signaling
Sodium
Sodium - metabolism
Sodium chloride
Sodium Chloride - pharmacology
stress response
Subcellular Fractions - drug effects
Subcellular Fractions - metabolism
Tobacco
Transcriptome - genetics
transcriptomics
Transport Vesicles - drug effects
Transport Vesicles - metabolism
Transport Vesicles - ultrastructure
unfolded protein response
Vacuoles
vesicle trafficking
title New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20plant%20salt%20acclimation:%20the%20roles%20of%20vesicle%20trafficking%20and%20reactive%20oxygen%20species%20signalling%20in%20mitochondria%20and%20the%20endomembrane%20system&rft.jtitle=The%20New%20phytologist&rft.au=Garcia%20de%20la%20Garma,%20Jesus&rft.date=2015-01&rft.volume=205&rft.issue=1&rft.spage=216&rft.epage=239&rft.pages=216-239&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12997&rft_dat=%3Cjstor_proqu%3Enewphytologist.205.1.216%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5537-ae380ea9ac2e9afdc09f8a6be8f80b6cb4beb3fab31235ea3f131d59c1c553303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1627986251&rft_id=info:pmid/25187269&rft_jstor_id=newphytologist.205.1.216&rfr_iscdi=true