Loading…
Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping
Being motivated from the recent developments in biomicrofluidics, a mathematical model is presented to analyze the two-layered electrothermal flow via peristaltic propulsion of couple stress fluids caused by velocity and thermal slip conditions. An asymmetric microchannel is considered for the flow...
Saved in:
Published in: | Journal of thermal analysis and calorimetry 2021-05, Vol.144 (4), p.1325-1342 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033 |
container_end_page | 1342 |
container_issue | 4 |
container_start_page | 1325 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 144 |
creator | Ranjit, N. K. Shit, G. C. Tripathi, D. |
description | Being motivated from the recent developments in biomicrofluidics, a mathematical model is presented to analyze the two-layered electrothermal flow via peristaltic propulsion of couple stress fluids caused by velocity and thermal slip conditions. An asymmetric microchannel is considered for the flow regime with different zeta potential moving with wave velocity. Couple stress fluid has been taken for aqueous solution to represent the non-Newtonian characteristics of physiological fluids. A lubrication approach with Debye H
u
¨
ckel linearization is taken to obtain the analytical solution. Furthermore, heat transfer analysis is performed to analyze the thermal characteristics and variations in Nusselt number in the presence of thermal radiation. The study shows that the temperature reduces with increasing the electrical double layer thickness, thermal radiation, couple stress parameter, and magnitude of Brinkman number, however, it enhances with increasing the Joule heating and thermal slip effects. The rate of heat transfer enhances with Joule heating effects, while the trend is reversed due to the presence of two-layered electroosmotic flow and couple stress effect. |
doi_str_mv | 10.1007/s10973-020-10380-z |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2514013081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658879788</galeid><sourcerecordid>A658879788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033</originalsourceid><addsrcrecordid>eNp9kV9r3iAUxsPYYF23L7ArYVe7SHfUJJrLUrqtUBjsz7UYPb61mJipWfv2088ug9GboehBf494nqdp3lI4owDiQ6YwCt4Cg5YCl9A-PGtOaC9ly0Y2PK81r_VAe3jZvMr5FgDGEehJs10GNCXFcoNp1oHoRYdj9pn4hZS72AZ9xISWmLitAUkuCXMmLmze1jXePXK6znycZyzJGzJ7k6K50cuCgfzymqyYfC46lHq5bvPql8Pr5oXTIeObv_tp8-Pj5feLz-31l09XF-fXrenYWFrJXMenDnrRWwaOWrDgnGHQG4FyAiPsxAVnZho6ziYLgx0HMVRDOpAOOD9t3u3vrin-3DAXdRu3VFvMivW0A8pB0kqd7dRBB1R-cbEkbeqwWJuJCzpfz8-HaqcYhZRV8P6JoDIF78tBbzmrq29fn7JsZ6srOSd0ak1-1umoKKjH7NSenarZqT_ZqYcq4rsoV3g5YPr37_-ofgMFlJ26</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514013081</pqid></control><display><type>article</type><title>Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping</title><source>Springer Nature</source><creator>Ranjit, N. K. ; Shit, G. C. ; Tripathi, D.</creator><creatorcontrib>Ranjit, N. K. ; Shit, G. C. ; Tripathi, D.</creatorcontrib><description>Being motivated from the recent developments in biomicrofluidics, a mathematical model is presented to analyze the two-layered electrothermal flow via peristaltic propulsion of couple stress fluids caused by velocity and thermal slip conditions. An asymmetric microchannel is considered for the flow regime with different zeta potential moving with wave velocity. Couple stress fluid has been taken for aqueous solution to represent the non-Newtonian characteristics of physiological fluids. A lubrication approach with Debye H
u
¨
ckel linearization is taken to obtain the analytical solution. Furthermore, heat transfer analysis is performed to analyze the thermal characteristics and variations in Nusselt number in the presence of thermal radiation. The study shows that the temperature reduces with increasing the electrical double layer thickness, thermal radiation, couple stress parameter, and magnitude of Brinkman number, however, it enhances with increasing the Joule heating and thermal slip effects. The rate of heat transfer enhances with Joule heating effects, while the trend is reversed due to the presence of two-layered electroosmotic flow and couple stress effect.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-10380-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analytical Chemistry ; Aqueous solutions ; Asymmetry ; Chemistry ; Chemistry and Materials Science ; Computational fluid dynamics ; Electric properties ; Electroosmosis ; Exact solutions ; Fluid flow ; Heat transfer ; High temperature effects ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Microchannels ; Ohmic dissipation ; Physical Chemistry ; Polymer Sciences ; Resistance heating ; Slip ; Thermal radiation ; Thickness ; Wave propagation ; Wave velocity ; Zeta potential</subject><ispartof>Journal of thermal analysis and calorimetry, 2021-05, Vol.144 (4), p.1325-1342</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033</citedby><cites>FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033</cites><orcidid>0000-0001-6110-2471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ranjit, N. K.</creatorcontrib><creatorcontrib>Shit, G. C.</creatorcontrib><creatorcontrib>Tripathi, D.</creatorcontrib><title>Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Being motivated from the recent developments in biomicrofluidics, a mathematical model is presented to analyze the two-layered electrothermal flow via peristaltic propulsion of couple stress fluids caused by velocity and thermal slip conditions. An asymmetric microchannel is considered for the flow regime with different zeta potential moving with wave velocity. Couple stress fluid has been taken for aqueous solution to represent the non-Newtonian characteristics of physiological fluids. A lubrication approach with Debye H
u
¨
ckel linearization is taken to obtain the analytical solution. Furthermore, heat transfer analysis is performed to analyze the thermal characteristics and variations in Nusselt number in the presence of thermal radiation. The study shows that the temperature reduces with increasing the electrical double layer thickness, thermal radiation, couple stress parameter, and magnitude of Brinkman number, however, it enhances with increasing the Joule heating and thermal slip effects. The rate of heat transfer enhances with Joule heating effects, while the trend is reversed due to the presence of two-layered electroosmotic flow and couple stress effect.</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Aqueous solutions</subject><subject>Asymmetry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational fluid dynamics</subject><subject>Electric properties</subject><subject>Electroosmosis</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>High temperature effects</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Microchannels</subject><subject>Ohmic dissipation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Resistance heating</subject><subject>Slip</subject><subject>Thermal radiation</subject><subject>Thickness</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><subject>Zeta potential</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV9r3iAUxsPYYF23L7ArYVe7SHfUJJrLUrqtUBjsz7UYPb61mJipWfv2088ug9GboehBf494nqdp3lI4owDiQ6YwCt4Cg5YCl9A-PGtOaC9ly0Y2PK81r_VAe3jZvMr5FgDGEehJs10GNCXFcoNp1oHoRYdj9pn4hZS72AZ9xISWmLitAUkuCXMmLmze1jXePXK6znycZyzJGzJ7k6K50cuCgfzymqyYfC46lHq5bvPql8Pr5oXTIeObv_tp8-Pj5feLz-31l09XF-fXrenYWFrJXMenDnrRWwaOWrDgnGHQG4FyAiPsxAVnZho6ziYLgx0HMVRDOpAOOD9t3u3vrin-3DAXdRu3VFvMivW0A8pB0kqd7dRBB1R-cbEkbeqwWJuJCzpfz8-HaqcYhZRV8P6JoDIF78tBbzmrq29fn7JsZ6srOSd0ak1-1umoKKjH7NSenarZqT_ZqYcq4rsoV3g5YPr37_-ofgMFlJ26</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ranjit, N. K.</creator><creator>Shit, G. C.</creator><creator>Tripathi, D.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0001-6110-2471</orcidid></search><sort><creationdate>20210501</creationdate><title>Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping</title><author>Ranjit, N. K. ; Shit, G. C. ; Tripathi, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Aqueous solutions</topic><topic>Asymmetry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational fluid dynamics</topic><topic>Electric properties</topic><topic>Electroosmosis</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>High temperature effects</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Microchannels</topic><topic>Ohmic dissipation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Resistance heating</topic><topic>Slip</topic><topic>Thermal radiation</topic><topic>Thickness</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjit, N. K.</creatorcontrib><creatorcontrib>Shit, G. C.</creatorcontrib><creatorcontrib>Tripathi, D.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjit, N. K.</au><au>Shit, G. C.</au><au>Tripathi, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>144</volume><issue>4</issue><spage>1325</spage><epage>1342</epage><pages>1325-1342</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Being motivated from the recent developments in biomicrofluidics, a mathematical model is presented to analyze the two-layered electrothermal flow via peristaltic propulsion of couple stress fluids caused by velocity and thermal slip conditions. An asymmetric microchannel is considered for the flow regime with different zeta potential moving with wave velocity. Couple stress fluid has been taken for aqueous solution to represent the non-Newtonian characteristics of physiological fluids. A lubrication approach with Debye H
u
¨
ckel linearization is taken to obtain the analytical solution. Furthermore, heat transfer analysis is performed to analyze the thermal characteristics and variations in Nusselt number in the presence of thermal radiation. The study shows that the temperature reduces with increasing the electrical double layer thickness, thermal radiation, couple stress parameter, and magnitude of Brinkman number, however, it enhances with increasing the Joule heating and thermal slip effects. The rate of heat transfer enhances with Joule heating effects, while the trend is reversed due to the presence of two-layered electroosmotic flow and couple stress effect.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-10380-z</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6110-2471</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2021-05, Vol.144 (4), p.1325-1342 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2514013081 |
source | Springer Nature |
subjects | Analysis Analytical Chemistry Aqueous solutions Asymmetry Chemistry Chemistry and Materials Science Computational fluid dynamics Electric properties Electroosmosis Exact solutions Fluid flow Heat transfer High temperature effects Inorganic Chemistry Measurement Science and Instrumentation Microchannels Ohmic dissipation Physical Chemistry Polymer Sciences Resistance heating Slip Thermal radiation Thickness Wave propagation Wave velocity Zeta potential |
title | Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrothermal%20analysis%20in%20two-layered%20couple%20stress%20fluid%20flow%20in%20an%20asymmetric%20microchannel%20via%20peristaltic%20pumping&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Ranjit,%20N.%20K.&rft.date=2021-05-01&rft.volume=144&rft.issue=4&rft.spage=1325&rft.epage=1342&rft.pages=1325-1342&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-10380-z&rft_dat=%3Cgale_proqu%3EA658879788%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2514013081&rft_id=info:pmid/&rft_galeid=A658879788&rfr_iscdi=true |