Loading…

Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping

Being motivated from the recent developments in biomicrofluidics, a mathematical model is presented to analyze the two-layered electrothermal flow via peristaltic propulsion of couple stress fluids caused by velocity and thermal slip conditions. An asymmetric microchannel is considered for the flow...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2021-05, Vol.144 (4), p.1325-1342
Main Authors: Ranjit, N. K., Shit, G. C., Tripathi, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033
cites cdi_FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033
container_end_page 1342
container_issue 4
container_start_page 1325
container_title Journal of thermal analysis and calorimetry
container_volume 144
creator Ranjit, N. K.
Shit, G. C.
Tripathi, D.
description Being motivated from the recent developments in biomicrofluidics, a mathematical model is presented to analyze the two-layered electrothermal flow via peristaltic propulsion of couple stress fluids caused by velocity and thermal slip conditions. An asymmetric microchannel is considered for the flow regime with different zeta potential moving with wave velocity. Couple stress fluid has been taken for aqueous solution to represent the non-Newtonian characteristics of physiological fluids. A lubrication approach with Debye H u ¨ ckel linearization is taken to obtain the analytical solution. Furthermore, heat transfer analysis is performed to analyze the thermal characteristics and variations in Nusselt number in the presence of thermal radiation. The study shows that the temperature reduces with increasing the electrical double layer thickness, thermal radiation, couple stress parameter, and magnitude of Brinkman number, however, it enhances with increasing the Joule heating and thermal slip effects. The rate of heat transfer enhances with Joule heating effects, while the trend is reversed due to the presence of two-layered electroosmotic flow and couple stress effect.
doi_str_mv 10.1007/s10973-020-10380-z
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2514013081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658879788</galeid><sourcerecordid>A658879788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033</originalsourceid><addsrcrecordid>eNp9kV9r3iAUxsPYYF23L7ArYVe7SHfUJJrLUrqtUBjsz7UYPb61mJipWfv2088ug9GboehBf494nqdp3lI4owDiQ6YwCt4Cg5YCl9A-PGtOaC9ly0Y2PK81r_VAe3jZvMr5FgDGEehJs10GNCXFcoNp1oHoRYdj9pn4hZS72AZ9xISWmLitAUkuCXMmLmze1jXePXK6znycZyzJGzJ7k6K50cuCgfzymqyYfC46lHq5bvPql8Pr5oXTIeObv_tp8-Pj5feLz-31l09XF-fXrenYWFrJXMenDnrRWwaOWrDgnGHQG4FyAiPsxAVnZho6ziYLgx0HMVRDOpAOOD9t3u3vrin-3DAXdRu3VFvMivW0A8pB0kqd7dRBB1R-cbEkbeqwWJuJCzpfz8-HaqcYhZRV8P6JoDIF78tBbzmrq29fn7JsZ6srOSd0ak1-1umoKKjH7NSenarZqT_ZqYcq4rsoV3g5YPr37_-ofgMFlJ26</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514013081</pqid></control><display><type>article</type><title>Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping</title><source>Springer Nature</source><creator>Ranjit, N. K. ; Shit, G. C. ; Tripathi, D.</creator><creatorcontrib>Ranjit, N. K. ; Shit, G. C. ; Tripathi, D.</creatorcontrib><description>Being motivated from the recent developments in biomicrofluidics, a mathematical model is presented to analyze the two-layered electrothermal flow via peristaltic propulsion of couple stress fluids caused by velocity and thermal slip conditions. An asymmetric microchannel is considered for the flow regime with different zeta potential moving with wave velocity. Couple stress fluid has been taken for aqueous solution to represent the non-Newtonian characteristics of physiological fluids. A lubrication approach with Debye H u ¨ ckel linearization is taken to obtain the analytical solution. Furthermore, heat transfer analysis is performed to analyze the thermal characteristics and variations in Nusselt number in the presence of thermal radiation. The study shows that the temperature reduces with increasing the electrical double layer thickness, thermal radiation, couple stress parameter, and magnitude of Brinkman number, however, it enhances with increasing the Joule heating and thermal slip effects. The rate of heat transfer enhances with Joule heating effects, while the trend is reversed due to the presence of two-layered electroosmotic flow and couple stress effect.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-10380-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analytical Chemistry ; Aqueous solutions ; Asymmetry ; Chemistry ; Chemistry and Materials Science ; Computational fluid dynamics ; Electric properties ; Electroosmosis ; Exact solutions ; Fluid flow ; Heat transfer ; High temperature effects ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Microchannels ; Ohmic dissipation ; Physical Chemistry ; Polymer Sciences ; Resistance heating ; Slip ; Thermal radiation ; Thickness ; Wave propagation ; Wave velocity ; Zeta potential</subject><ispartof>Journal of thermal analysis and calorimetry, 2021-05, Vol.144 (4), p.1325-1342</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033</citedby><cites>FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033</cites><orcidid>0000-0001-6110-2471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ranjit, N. K.</creatorcontrib><creatorcontrib>Shit, G. C.</creatorcontrib><creatorcontrib>Tripathi, D.</creatorcontrib><title>Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Being motivated from the recent developments in biomicrofluidics, a mathematical model is presented to analyze the two-layered electrothermal flow via peristaltic propulsion of couple stress fluids caused by velocity and thermal slip conditions. An asymmetric microchannel is considered for the flow regime with different zeta potential moving with wave velocity. Couple stress fluid has been taken for aqueous solution to represent the non-Newtonian characteristics of physiological fluids. A lubrication approach with Debye H u ¨ ckel linearization is taken to obtain the analytical solution. Furthermore, heat transfer analysis is performed to analyze the thermal characteristics and variations in Nusselt number in the presence of thermal radiation. The study shows that the temperature reduces with increasing the electrical double layer thickness, thermal radiation, couple stress parameter, and magnitude of Brinkman number, however, it enhances with increasing the Joule heating and thermal slip effects. The rate of heat transfer enhances with Joule heating effects, while the trend is reversed due to the presence of two-layered electroosmotic flow and couple stress effect.</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Aqueous solutions</subject><subject>Asymmetry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational fluid dynamics</subject><subject>Electric properties</subject><subject>Electroosmosis</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>High temperature effects</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Microchannels</subject><subject>Ohmic dissipation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Resistance heating</subject><subject>Slip</subject><subject>Thermal radiation</subject><subject>Thickness</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><subject>Zeta potential</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV9r3iAUxsPYYF23L7ArYVe7SHfUJJrLUrqtUBjsz7UYPb61mJipWfv2088ug9GboehBf494nqdp3lI4owDiQ6YwCt4Cg5YCl9A-PGtOaC9ly0Y2PK81r_VAe3jZvMr5FgDGEehJs10GNCXFcoNp1oHoRYdj9pn4hZS72AZ9xISWmLitAUkuCXMmLmze1jXePXK6znycZyzJGzJ7k6K50cuCgfzymqyYfC46lHq5bvPql8Pr5oXTIeObv_tp8-Pj5feLz-31l09XF-fXrenYWFrJXMenDnrRWwaOWrDgnGHQG4FyAiPsxAVnZho6ziYLgx0HMVRDOpAOOD9t3u3vrin-3DAXdRu3VFvMivW0A8pB0kqd7dRBB1R-cbEkbeqwWJuJCzpfz8-HaqcYhZRV8P6JoDIF78tBbzmrq29fn7JsZ6srOSd0ak1-1umoKKjH7NSenarZqT_ZqYcq4rsoV3g5YPr37_-ofgMFlJ26</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ranjit, N. K.</creator><creator>Shit, G. C.</creator><creator>Tripathi, D.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0001-6110-2471</orcidid></search><sort><creationdate>20210501</creationdate><title>Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping</title><author>Ranjit, N. K. ; Shit, G. C. ; Tripathi, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Aqueous solutions</topic><topic>Asymmetry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational fluid dynamics</topic><topic>Electric properties</topic><topic>Electroosmosis</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>High temperature effects</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Microchannels</topic><topic>Ohmic dissipation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Resistance heating</topic><topic>Slip</topic><topic>Thermal radiation</topic><topic>Thickness</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjit, N. K.</creatorcontrib><creatorcontrib>Shit, G. C.</creatorcontrib><creatorcontrib>Tripathi, D.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjit, N. K.</au><au>Shit, G. C.</au><au>Tripathi, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>144</volume><issue>4</issue><spage>1325</spage><epage>1342</epage><pages>1325-1342</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Being motivated from the recent developments in biomicrofluidics, a mathematical model is presented to analyze the two-layered electrothermal flow via peristaltic propulsion of couple stress fluids caused by velocity and thermal slip conditions. An asymmetric microchannel is considered for the flow regime with different zeta potential moving with wave velocity. Couple stress fluid has been taken for aqueous solution to represent the non-Newtonian characteristics of physiological fluids. A lubrication approach with Debye H u ¨ ckel linearization is taken to obtain the analytical solution. Furthermore, heat transfer analysis is performed to analyze the thermal characteristics and variations in Nusselt number in the presence of thermal radiation. The study shows that the temperature reduces with increasing the electrical double layer thickness, thermal radiation, couple stress parameter, and magnitude of Brinkman number, however, it enhances with increasing the Joule heating and thermal slip effects. The rate of heat transfer enhances with Joule heating effects, while the trend is reversed due to the presence of two-layered electroosmotic flow and couple stress effect.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-10380-z</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6110-2471</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2021-05, Vol.144 (4), p.1325-1342
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2514013081
source Springer Nature
subjects Analysis
Analytical Chemistry
Aqueous solutions
Asymmetry
Chemistry
Chemistry and Materials Science
Computational fluid dynamics
Electric properties
Electroosmosis
Exact solutions
Fluid flow
Heat transfer
High temperature effects
Inorganic Chemistry
Measurement Science and Instrumentation
Microchannels
Ohmic dissipation
Physical Chemistry
Polymer Sciences
Resistance heating
Slip
Thermal radiation
Thickness
Wave propagation
Wave velocity
Zeta potential
title Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrothermal%20analysis%20in%20two-layered%20couple%20stress%20fluid%20flow%20in%20an%20asymmetric%20microchannel%20via%20peristaltic%20pumping&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Ranjit,%20N.%20K.&rft.date=2021-05-01&rft.volume=144&rft.issue=4&rft.spage=1325&rft.epage=1342&rft.pages=1325-1342&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-10380-z&rft_dat=%3Cgale_proqu%3EA658879788%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-82f43b40575d20f1d0d0ffc205c7e8b0c7db3732cb6432bd06d9676007408f033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2514013081&rft_id=info:pmid/&rft_galeid=A658879788&rfr_iscdi=true