Loading…

An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic

The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes w...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2021-04, Vol.133 (18), p.10274-10281
Main Authors: Li, Longyu, Lin, Qianming, Tang, Miao, Tsai, Esther H. R., Ke, Chenfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2689-db56525892b8fe7a4c672ed36ef228eba2a685bf58eedca9a74cd461fbc4f90c3
cites cdi_FETCH-LOGICAL-c2689-db56525892b8fe7a4c672ed36ef228eba2a685bf58eedca9a74cd461fbc4f90c3
container_end_page 10281
container_issue 18
container_start_page 10274
container_title Angewandte Chemie
container_volume 133
creator Li, Longyu
Lin, Qianming
Tang, Miao
Tsai, Esther H. R.
Ke, Chenfeng
description The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes. Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations.
doi_str_mv 10.1002/ange.202017019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515010343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515010343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2689-db56525892b8fe7a4c672ed36ef228eba2a685bf58eedca9a74cd461fbc4f90c3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMkdiTrl2bCceSymlUvmRgNlynOsqVZsUOxFk4xF4Rp6EVEUwMt3lnO9Kh5BzCiMKwC5NtcQRAwY0BaoOyIAKRuMkFekhGQBwHmeMq2NyEsIKACRL1YDMxlU0rxpcetNgEV1jKJdVVLvIRI_1utsGbIva1415NxV-fXxemdBjT2iiSWvbTY4-uis3pT0lR86sA5793CF5uZk-T27jxcNsPhkvYstkpuIiF1IwkSmWZw5Tw61MGRaJRMdYhrlhRmYidyJDLKxRJuW24JK63HKnwCZDcrHf3fr6tcXQ6FXd-qp_qZmgAigkPOmp0Z6yvg7Bo9NbX26M7zQFvYuld7H0b6xeUHvhrVxj9w-tx_ez6Z_7DbrQbtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515010343</pqid></control><display><type>article</type><title>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Li, Longyu ; Lin, Qianming ; Tang, Miao ; Tsai, Esther H. R. ; Ke, Chenfeng</creator><creatorcontrib>Li, Longyu ; Lin, Qianming ; Tang, Miao ; Tsai, Esther H. R. ; Ke, Chenfeng</creatorcontrib><description>The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes. Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202017019</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; 3D printing ; Adaptability ; Biomimetics ; biomimicry ; Chemistry ; Copolymers ; Crosslinking ; Cyclodextrin ; Cyclodextrins ; Design ; Fabrication ; Graft copolymers ; Hydrogels ; Invertebrates ; Marine animals ; Marine organisms ; mechanically adaptive hydrogels ; Polyethylene glycol ; polypseudorotaxane ; slide-ring gels ; Stiffness ; Tensile strain ; Three dimensional printing ; Vegetables</subject><ispartof>Angewandte Chemie, 2021-04, Vol.133 (18), p.10274-10281</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2689-db56525892b8fe7a4c672ed36ef228eba2a685bf58eedca9a74cd461fbc4f90c3</citedby><cites>FETCH-LOGICAL-c2689-db56525892b8fe7a4c672ed36ef228eba2a685bf58eedca9a74cd461fbc4f90c3</cites><orcidid>0000-0002-4689-8923 ; 0000-0002-3225-0229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Li, Longyu</creatorcontrib><creatorcontrib>Lin, Qianming</creatorcontrib><creatorcontrib>Tang, Miao</creatorcontrib><creatorcontrib>Tsai, Esther H. R.</creatorcontrib><creatorcontrib>Ke, Chenfeng</creatorcontrib><title>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</title><title>Angewandte Chemie</title><description>The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes. Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Adaptability</subject><subject>Biomimetics</subject><subject>biomimicry</subject><subject>Chemistry</subject><subject>Copolymers</subject><subject>Crosslinking</subject><subject>Cyclodextrin</subject><subject>Cyclodextrins</subject><subject>Design</subject><subject>Fabrication</subject><subject>Graft copolymers</subject><subject>Hydrogels</subject><subject>Invertebrates</subject><subject>Marine animals</subject><subject>Marine organisms</subject><subject>mechanically adaptive hydrogels</subject><subject>Polyethylene glycol</subject><subject>polypseudorotaxane</subject><subject>slide-ring gels</subject><subject>Stiffness</subject><subject>Tensile strain</subject><subject>Three dimensional printing</subject><subject>Vegetables</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMkdiTrl2bCceSymlUvmRgNlynOsqVZsUOxFk4xF4Rp6EVEUwMt3lnO9Kh5BzCiMKwC5NtcQRAwY0BaoOyIAKRuMkFekhGQBwHmeMq2NyEsIKACRL1YDMxlU0rxpcetNgEV1jKJdVVLvIRI_1utsGbIva1415NxV-fXxemdBjT2iiSWvbTY4-uis3pT0lR86sA5793CF5uZk-T27jxcNsPhkvYstkpuIiF1IwkSmWZw5Tw61MGRaJRMdYhrlhRmYidyJDLKxRJuW24JK63HKnwCZDcrHf3fr6tcXQ6FXd-qp_qZmgAigkPOmp0Z6yvg7Bo9NbX26M7zQFvYuld7H0b6xeUHvhrVxj9w-tx_ez6Z_7DbrQbtI</recordid><startdate>20210426</startdate><enddate>20210426</enddate><creator>Li, Longyu</creator><creator>Lin, Qianming</creator><creator>Tang, Miao</creator><creator>Tsai, Esther H. R.</creator><creator>Ke, Chenfeng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4689-8923</orcidid><orcidid>https://orcid.org/0000-0002-3225-0229</orcidid></search><sort><creationdate>20210426</creationdate><title>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</title><author>Li, Longyu ; Lin, Qianming ; Tang, Miao ; Tsai, Esther H. R. ; Ke, Chenfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2689-db56525892b8fe7a4c672ed36ef228eba2a685bf58eedca9a74cd461fbc4f90c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Adaptability</topic><topic>Biomimetics</topic><topic>biomimicry</topic><topic>Chemistry</topic><topic>Copolymers</topic><topic>Crosslinking</topic><topic>Cyclodextrin</topic><topic>Cyclodextrins</topic><topic>Design</topic><topic>Fabrication</topic><topic>Graft copolymers</topic><topic>Hydrogels</topic><topic>Invertebrates</topic><topic>Marine animals</topic><topic>Marine organisms</topic><topic>mechanically adaptive hydrogels</topic><topic>Polyethylene glycol</topic><topic>polypseudorotaxane</topic><topic>slide-ring gels</topic><topic>Stiffness</topic><topic>Tensile strain</topic><topic>Three dimensional printing</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Longyu</creatorcontrib><creatorcontrib>Lin, Qianming</creatorcontrib><creatorcontrib>Tang, Miao</creatorcontrib><creatorcontrib>Tsai, Esther H. R.</creatorcontrib><creatorcontrib>Ke, Chenfeng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Longyu</au><au>Lin, Qianming</au><au>Tang, Miao</au><au>Tsai, Esther H. R.</au><au>Ke, Chenfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</atitle><jtitle>Angewandte Chemie</jtitle><date>2021-04-26</date><risdate>2021</risdate><volume>133</volume><issue>18</issue><spage>10274</spage><epage>10281</epage><pages>10274-10281</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes. Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202017019</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4689-8923</orcidid><orcidid>https://orcid.org/0000-0002-3225-0229</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2021-04, Vol.133 (18), p.10274-10281
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2515010343
source Wiley-Blackwell Read & Publish Collection
subjects 3-D printers
3D printing
Adaptability
Biomimetics
biomimicry
Chemistry
Copolymers
Crosslinking
Cyclodextrin
Cyclodextrins
Design
Fabrication
Graft copolymers
Hydrogels
Invertebrates
Marine animals
Marine organisms
mechanically adaptive hydrogels
Polyethylene glycol
polypseudorotaxane
slide-ring gels
Stiffness
Tensile strain
Three dimensional printing
Vegetables
title An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrated%20Design%20of%20a%20Polypseudorotaxane%E2%80%90Based%20Sea%20Cucumber%20Mimic&rft.jtitle=Angewandte%20Chemie&rft.au=Li,%20Longyu&rft.date=2021-04-26&rft.volume=133&rft.issue=18&rft.spage=10274&rft.epage=10281&rft.pages=10274-10281&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202017019&rft_dat=%3Cproquest_cross%3E2515010343%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2689-db56525892b8fe7a4c672ed36ef228eba2a685bf58eedca9a74cd461fbc4f90c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515010343&rft_id=info:pmid/&rfr_iscdi=true