Loading…
The priority of microgravity focusing inversion in 3D modeling of subsurface voids
Geophysical methods can be used to detect voids, cavities, and tunnels. Inversion of microgravity data provides the distribution of the subsurface density. It can be effective to reconstruct concealed cavities and other underground openings, as they are often at different depths that have a low dens...
Saved in:
Published in: | Environmental earth sciences 2021-05, Vol.80 (9), Article 343 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a342t-ef03165727f983986664ebfb63c032958de3146fc31823bf0d3718d6fa368e43 |
---|---|
cites | cdi_FETCH-LOGICAL-a342t-ef03165727f983986664ebfb63c032958de3146fc31823bf0d3718d6fa368e43 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Environmental earth sciences |
container_volume | 80 |
creator | Moazam, Sahar Aghajani, Hamid Kalate, Ali Nejati |
description | Geophysical methods can be used to detect voids, cavities, and tunnels. Inversion of microgravity data provides the distribution of the subsurface density. It can be effective to reconstruct concealed cavities and other underground openings, as they are often at different depths that have a low density. We have smooth and focusing inversion methods that apply the minimum norm and minimum support stabilizers. In this study, we used smooth and focusing inversion methods by reweighted regularized conjugate gradient (RRCG) method for inverting microgravity data. Here, these methods are utilized to inversion of microgravity data from two synthetic models and a microgravity data set over a tunnel located in Yucca Flat, Nevada. The results demonstrated smooth inversion cannot detect sharp boundaries and overestimates the bottom depths of the underground openings, but the focusing inversion method recovers models with sharp boundaries and does not have the problems of the previous method. The results indicate the priority of the focusing inversion method for the detection of voids by microgravity data. |
doi_str_mv | 10.1007/s12665-021-09604-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515479026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515479026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-ef03165727f983986664ebfb63c032958de3146fc31823bf0d3718d6fa368e43</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgqf0DngKeo0lmdzY5Sv2EgiC9h_1Iakq7qUm30H9v6orenMvMMO-9mXmEXAt-Kziv7pKQiCXjUjCukRdMnZGJUIgMpdbnv7Xil2SW0prnAAGa44S8Lz8s3UUfot8faXB069sYVrE-nHoX2iH5fkV9f7Ax-dDnisID3YbObk6DzEhDk4bo6tbSQ_BduiIXrt4kO_vJU7J8elzOX9ji7fl1fr9gNRRyz6zLR2BZycppBTqfiIVtXIPQcpC6VJ0FUaBrQSgJjeMdVEJ16GpAZQuYkptRdhfD52DT3qzDEPu80chSlEWlucSMkiMqf5VStM7kZ7d1PBrBzck9M7pnsnvm2z2jMglGUsrgfmXjn_Q_rC98RXGX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515479026</pqid></control><display><type>article</type><title>The priority of microgravity focusing inversion in 3D modeling of subsurface voids</title><source>Springer Nature</source><creator>Moazam, Sahar ; Aghajani, Hamid ; Kalate, Ali Nejati</creator><creatorcontrib>Moazam, Sahar ; Aghajani, Hamid ; Kalate, Ali Nejati</creatorcontrib><description>Geophysical methods can be used to detect voids, cavities, and tunnels. Inversion of microgravity data provides the distribution of the subsurface density. It can be effective to reconstruct concealed cavities and other underground openings, as they are often at different depths that have a low density. We have smooth and focusing inversion methods that apply the minimum norm and minimum support stabilizers. In this study, we used smooth and focusing inversion methods by reweighted regularized conjugate gradient (RRCG) method for inverting microgravity data. Here, these methods are utilized to inversion of microgravity data from two synthetic models and a microgravity data set over a tunnel located in Yucca Flat, Nevada. The results demonstrated smooth inversion cannot detect sharp boundaries and overestimates the bottom depths of the underground openings, but the focusing inversion method recovers models with sharp boundaries and does not have the problems of the previous method. The results indicate the priority of the focusing inversion method for the detection of voids by microgravity data.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-021-09604-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biogeosciences ; Boundaries ; Cavities ; Data ; Density ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Geochemistry ; Geology ; Geophysical exploration ; Geophysical methods ; Hydrology/Water Resources ; Methods ; Microgravity ; Model testing ; Original Article ; Stabilizers ; Terrestrial Pollution ; Three dimensional models ; Tunnels ; Voids</subject><ispartof>Environmental earth sciences, 2021-05, Vol.80 (9), Article 343</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-ef03165727f983986664ebfb63c032958de3146fc31823bf0d3718d6fa368e43</citedby><cites>FETCH-LOGICAL-a342t-ef03165727f983986664ebfb63c032958de3146fc31823bf0d3718d6fa368e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Moazam, Sahar</creatorcontrib><creatorcontrib>Aghajani, Hamid</creatorcontrib><creatorcontrib>Kalate, Ali Nejati</creatorcontrib><title>The priority of microgravity focusing inversion in 3D modeling of subsurface voids</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Geophysical methods can be used to detect voids, cavities, and tunnels. Inversion of microgravity data provides the distribution of the subsurface density. It can be effective to reconstruct concealed cavities and other underground openings, as they are often at different depths that have a low density. We have smooth and focusing inversion methods that apply the minimum norm and minimum support stabilizers. In this study, we used smooth and focusing inversion methods by reweighted regularized conjugate gradient (RRCG) method for inverting microgravity data. Here, these methods are utilized to inversion of microgravity data from two synthetic models and a microgravity data set over a tunnel located in Yucca Flat, Nevada. The results demonstrated smooth inversion cannot detect sharp boundaries and overestimates the bottom depths of the underground openings, but the focusing inversion method recovers models with sharp boundaries and does not have the problems of the previous method. The results indicate the priority of the focusing inversion method for the detection of voids by microgravity data.</description><subject>Biogeosciences</subject><subject>Boundaries</subject><subject>Cavities</subject><subject>Data</subject><subject>Density</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysical exploration</subject><subject>Geophysical methods</subject><subject>Hydrology/Water Resources</subject><subject>Methods</subject><subject>Microgravity</subject><subject>Model testing</subject><subject>Original Article</subject><subject>Stabilizers</subject><subject>Terrestrial Pollution</subject><subject>Three dimensional models</subject><subject>Tunnels</subject><subject>Voids</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgqf0DngKeo0lmdzY5Sv2EgiC9h_1Iakq7qUm30H9v6orenMvMMO-9mXmEXAt-Kziv7pKQiCXjUjCukRdMnZGJUIgMpdbnv7Xil2SW0prnAAGa44S8Lz8s3UUfot8faXB069sYVrE-nHoX2iH5fkV9f7Ax-dDnisID3YbObk6DzEhDk4bo6tbSQ_BduiIXrt4kO_vJU7J8elzOX9ji7fl1fr9gNRRyz6zLR2BZycppBTqfiIVtXIPQcpC6VJ0FUaBrQSgJjeMdVEJ16GpAZQuYkptRdhfD52DT3qzDEPu80chSlEWlucSMkiMqf5VStM7kZ7d1PBrBzck9M7pnsnvm2z2jMglGUsrgfmXjn_Q_rC98RXGX</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Moazam, Sahar</creator><creator>Aghajani, Hamid</creator><creator>Kalate, Ali Nejati</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20210501</creationdate><title>The priority of microgravity focusing inversion in 3D modeling of subsurface voids</title><author>Moazam, Sahar ; Aghajani, Hamid ; Kalate, Ali Nejati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-ef03165727f983986664ebfb63c032958de3146fc31823bf0d3718d6fa368e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biogeosciences</topic><topic>Boundaries</topic><topic>Cavities</topic><topic>Data</topic><topic>Density</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysical exploration</topic><topic>Geophysical methods</topic><topic>Hydrology/Water Resources</topic><topic>Methods</topic><topic>Microgravity</topic><topic>Model testing</topic><topic>Original Article</topic><topic>Stabilizers</topic><topic>Terrestrial Pollution</topic><topic>Three dimensional models</topic><topic>Tunnels</topic><topic>Voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moazam, Sahar</creatorcontrib><creatorcontrib>Aghajani, Hamid</creatorcontrib><creatorcontrib>Kalate, Ali Nejati</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moazam, Sahar</au><au>Aghajani, Hamid</au><au>Kalate, Ali Nejati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The priority of microgravity focusing inversion in 3D modeling of subsurface voids</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>80</volume><issue>9</issue><artnum>343</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Geophysical methods can be used to detect voids, cavities, and tunnels. Inversion of microgravity data provides the distribution of the subsurface density. It can be effective to reconstruct concealed cavities and other underground openings, as they are often at different depths that have a low density. We have smooth and focusing inversion methods that apply the minimum norm and minimum support stabilizers. In this study, we used smooth and focusing inversion methods by reweighted regularized conjugate gradient (RRCG) method for inverting microgravity data. Here, these methods are utilized to inversion of microgravity data from two synthetic models and a microgravity data set over a tunnel located in Yucca Flat, Nevada. The results demonstrated smooth inversion cannot detect sharp boundaries and overestimates the bottom depths of the underground openings, but the focusing inversion method recovers models with sharp boundaries and does not have the problems of the previous method. The results indicate the priority of the focusing inversion method for the detection of voids by microgravity data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-021-09604-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-6280 |
ispartof | Environmental earth sciences, 2021-05, Vol.80 (9), Article 343 |
issn | 1866-6280 1866-6299 |
language | eng |
recordid | cdi_proquest_journals_2515479026 |
source | Springer Nature |
subjects | Biogeosciences Boundaries Cavities Data Density Earth and Environmental Science Earth Sciences Environmental Science and Engineering Geochemistry Geology Geophysical exploration Geophysical methods Hydrology/Water Resources Methods Microgravity Model testing Original Article Stabilizers Terrestrial Pollution Three dimensional models Tunnels Voids |
title | The priority of microgravity focusing inversion in 3D modeling of subsurface voids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20priority%20of%20microgravity%20focusing%20inversion%20in%203D%20modeling%20of%20subsurface%20voids&rft.jtitle=Environmental%20earth%20sciences&rft.au=Moazam,%20Sahar&rft.date=2021-05-01&rft.volume=80&rft.issue=9&rft.artnum=343&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-021-09604-8&rft_dat=%3Cproquest_cross%3E2515479026%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-ef03165727f983986664ebfb63c032958de3146fc31823bf0d3718d6fa368e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515479026&rft_id=info:pmid/&rfr_iscdi=true |