Loading…

Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler

Deep neural networks (DNNs) have been introduced to achieve the rapid design of photonic devices by creating a nonlinear function mapping the geometric structure to the optical response. By building the DNN with a finite-difference time-domain (FDTD) solver, we have demonstrated that both forward an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2021-05, Vol.39 (9), p.2790-2799
Main Authors: Tu, Xin, Xie, Wansheng, Chen, Zhenmin, Ge, Ming-Feng, Huang, Tianye, Song, Chaolong, Fu, H. Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3
cites cdi_FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3
container_end_page 2799
container_issue 9
container_start_page 2790
container_title Journal of lightwave technology
container_volume 39
creator Tu, Xin
Xie, Wansheng
Chen, Zhenmin
Ge, Ming-Feng
Huang, Tianye
Song, Chaolong
Fu, H. Y.
description Deep neural networks (DNNs) have been introduced to achieve the rapid design of photonic devices by creating a nonlinear function mapping the geometric structure to the optical response. By building the DNN with a finite-difference time-domain (FDTD) solver, we have demonstrated that both forward and inverse design approaches can be used to design efficiently a silicon photonic grating coupler-one of the fundamental silicon photonic devices with a wavelength-sensitive optical response, respectively. A systematic study on the model parameters including number of hidden layers, number of nodes in each layer, initial learning rate, size of training batches, number of evolution epochs, and dataset size/distribution has been carried out to analyze the relationship between the DNNs and the performances of inverse-designed devices. The study shows that the forward design approach based on an optimal forward-modeling network can achieve a peak coupling efficiency with a prediction accuracy as high as 91.7% for the coupler. And the inverse design approach based on an optimal inverse-prediction network can obtain target optical response spectrum as well as provide possibility to get an alternative design for the device. This work is helpful for the designers to improve the machine learning methods and expedite the design progress towards the creation of novel silicon photonic devices.
doi_str_mv 10.1109/JLT.2021.3057473
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515854479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9349118</ieee_id><sourcerecordid>2515854479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3</originalsourceid><addsrcrecordid>eNo9kEtLw0AURgdRsFb3gpsB16lz55FkllK1VuoDrEsJk8lNTY2ZOJMo_femtLj6NudcuIeQc2ATAKavHhbLCWccJoKpRCbigIxAqTTiHMQhGbFEiChNuDwmJyGsGQMp02RE3q8bU29CFagr6Q1iS5-w96Yepvt1_pM-ugLrQEvn6bz5QR9wwEK1arbCa1VX1jX05cN1rqksnXnTVc2KTl3f1uhPyVFp6oBn-x2Tt7vb5fQ-WjzP5tPrRWS5hi6Kc-SaydiWeax0WiqEMs9TEbMClLQSRM5jLFiq0RTcQGEhUWhinVsmbFyKMbnc3W29--4xdNna9X74LGRcgUqVlIkeKLajrHcheCyz1ldfxm8yYNk2YjZEzLYRs33EQbnYKRUi_uNaSA2Qij9RCW2V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515854479</pqid></control><display><type>article</type><title>Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tu, Xin ; Xie, Wansheng ; Chen, Zhenmin ; Ge, Ming-Feng ; Huang, Tianye ; Song, Chaolong ; Fu, H. Y.</creator><creatorcontrib>Tu, Xin ; Xie, Wansheng ; Chen, Zhenmin ; Ge, Ming-Feng ; Huang, Tianye ; Song, Chaolong ; Fu, H. Y.</creatorcontrib><description>Deep neural networks (DNNs) have been introduced to achieve the rapid design of photonic devices by creating a nonlinear function mapping the geometric structure to the optical response. By building the DNN with a finite-difference time-domain (FDTD) solver, we have demonstrated that both forward and inverse design approaches can be used to design efficiently a silicon photonic grating coupler-one of the fundamental silicon photonic devices with a wavelength-sensitive optical response, respectively. A systematic study on the model parameters including number of hidden layers, number of nodes in each layer, initial learning rate, size of training batches, number of evolution epochs, and dataset size/distribution has been carried out to analyze the relationship between the DNNs and the performances of inverse-designed devices. The study shows that the forward design approach based on an optimal forward-modeling network can achieve a peak coupling efficiency with a prediction accuracy as high as 91.7% for the coupler. And the inverse design approach based on an optimal inverse-prediction network can obtain target optical response spectrum as well as provide possibility to get an alternative design for the device. This work is helpful for the designers to improve the machine learning methods and expedite the design progress towards the creation of novel silicon photonic devices.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3057473</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Couplers ; Deep neural networks ; Design ; Devices ; Geometrical optics ; grating coupler ; Gratings ; Inverse design ; Machine learning ; Neural networks ; Optical coupling ; Parameter sensitivity ; Photonics ; Predictive models ; Silicon ; silicon photonics ; Training</subject><ispartof>Journal of lightwave technology, 2021-05, Vol.39 (9), p.2790-2799</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3</citedby><cites>FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3</cites><orcidid>0000-0002-4276-0011 ; 0000-0001-9754-9873 ; 0000-0003-4780-3727 ; 0000-0002-2748-6448 ; 0000-0002-6828-0147 ; 0000-0001-5090-0304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9349118$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Tu, Xin</creatorcontrib><creatorcontrib>Xie, Wansheng</creatorcontrib><creatorcontrib>Chen, Zhenmin</creatorcontrib><creatorcontrib>Ge, Ming-Feng</creatorcontrib><creatorcontrib>Huang, Tianye</creatorcontrib><creatorcontrib>Song, Chaolong</creatorcontrib><creatorcontrib>Fu, H. Y.</creatorcontrib><title>Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Deep neural networks (DNNs) have been introduced to achieve the rapid design of photonic devices by creating a nonlinear function mapping the geometric structure to the optical response. By building the DNN with a finite-difference time-domain (FDTD) solver, we have demonstrated that both forward and inverse design approaches can be used to design efficiently a silicon photonic grating coupler-one of the fundamental silicon photonic devices with a wavelength-sensitive optical response, respectively. A systematic study on the model parameters including number of hidden layers, number of nodes in each layer, initial learning rate, size of training batches, number of evolution epochs, and dataset size/distribution has been carried out to analyze the relationship between the DNNs and the performances of inverse-designed devices. The study shows that the forward design approach based on an optimal forward-modeling network can achieve a peak coupling efficiency with a prediction accuracy as high as 91.7% for the coupler. And the inverse design approach based on an optimal inverse-prediction network can obtain target optical response spectrum as well as provide possibility to get an alternative design for the device. This work is helpful for the designers to improve the machine learning methods and expedite the design progress towards the creation of novel silicon photonic devices.</description><subject>Artificial neural networks</subject><subject>Couplers</subject><subject>Deep neural networks</subject><subject>Design</subject><subject>Devices</subject><subject>Geometrical optics</subject><subject>grating coupler</subject><subject>Gratings</subject><subject>Inverse design</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optical coupling</subject><subject>Parameter sensitivity</subject><subject>Photonics</subject><subject>Predictive models</subject><subject>Silicon</subject><subject>silicon photonics</subject><subject>Training</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AURgdRsFb3gpsB16lz55FkllK1VuoDrEsJk8lNTY2ZOJMo_femtLj6NudcuIeQc2ATAKavHhbLCWccJoKpRCbigIxAqTTiHMQhGbFEiChNuDwmJyGsGQMp02RE3q8bU29CFagr6Q1iS5-w96Yepvt1_pM-ugLrQEvn6bz5QR9wwEK1arbCa1VX1jX05cN1rqksnXnTVc2KTl3f1uhPyVFp6oBn-x2Tt7vb5fQ-WjzP5tPrRWS5hi6Kc-SaydiWeax0WiqEMs9TEbMClLQSRM5jLFiq0RTcQGEhUWhinVsmbFyKMbnc3W29--4xdNna9X74LGRcgUqVlIkeKLajrHcheCyz1ldfxm8yYNk2YjZEzLYRs33EQbnYKRUi_uNaSA2Qij9RCW2V</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Tu, Xin</creator><creator>Xie, Wansheng</creator><creator>Chen, Zhenmin</creator><creator>Ge, Ming-Feng</creator><creator>Huang, Tianye</creator><creator>Song, Chaolong</creator><creator>Fu, H. Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4276-0011</orcidid><orcidid>https://orcid.org/0000-0001-9754-9873</orcidid><orcidid>https://orcid.org/0000-0003-4780-3727</orcidid><orcidid>https://orcid.org/0000-0002-2748-6448</orcidid><orcidid>https://orcid.org/0000-0002-6828-0147</orcidid><orcidid>https://orcid.org/0000-0001-5090-0304</orcidid></search><sort><creationdate>20210501</creationdate><title>Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler</title><author>Tu, Xin ; Xie, Wansheng ; Chen, Zhenmin ; Ge, Ming-Feng ; Huang, Tianye ; Song, Chaolong ; Fu, H. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Couplers</topic><topic>Deep neural networks</topic><topic>Design</topic><topic>Devices</topic><topic>Geometrical optics</topic><topic>grating coupler</topic><topic>Gratings</topic><topic>Inverse design</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optical coupling</topic><topic>Parameter sensitivity</topic><topic>Photonics</topic><topic>Predictive models</topic><topic>Silicon</topic><topic>silicon photonics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Xin</creatorcontrib><creatorcontrib>Xie, Wansheng</creatorcontrib><creatorcontrib>Chen, Zhenmin</creatorcontrib><creatorcontrib>Ge, Ming-Feng</creatorcontrib><creatorcontrib>Huang, Tianye</creatorcontrib><creatorcontrib>Song, Chaolong</creatorcontrib><creatorcontrib>Fu, H. Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Xin</au><au>Xie, Wansheng</au><au>Chen, Zhenmin</au><au>Ge, Ming-Feng</au><au>Huang, Tianye</au><au>Song, Chaolong</au><au>Fu, H. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>39</volume><issue>9</issue><spage>2790</spage><epage>2799</epage><pages>2790-2799</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Deep neural networks (DNNs) have been introduced to achieve the rapid design of photonic devices by creating a nonlinear function mapping the geometric structure to the optical response. By building the DNN with a finite-difference time-domain (FDTD) solver, we have demonstrated that both forward and inverse design approaches can be used to design efficiently a silicon photonic grating coupler-one of the fundamental silicon photonic devices with a wavelength-sensitive optical response, respectively. A systematic study on the model parameters including number of hidden layers, number of nodes in each layer, initial learning rate, size of training batches, number of evolution epochs, and dataset size/distribution has been carried out to analyze the relationship between the DNNs and the performances of inverse-designed devices. The study shows that the forward design approach based on an optimal forward-modeling network can achieve a peak coupling efficiency with a prediction accuracy as high as 91.7% for the coupler. And the inverse design approach based on an optimal inverse-prediction network can obtain target optical response spectrum as well as provide possibility to get an alternative design for the device. This work is helpful for the designers to improve the machine learning methods and expedite the design progress towards the creation of novel silicon photonic devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3057473</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4276-0011</orcidid><orcidid>https://orcid.org/0000-0001-9754-9873</orcidid><orcidid>https://orcid.org/0000-0003-4780-3727</orcidid><orcidid>https://orcid.org/0000-0002-2748-6448</orcidid><orcidid>https://orcid.org/0000-0002-6828-0147</orcidid><orcidid>https://orcid.org/0000-0001-5090-0304</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-05, Vol.39 (9), p.2790-2799
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_2515854479
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural networks
Couplers
Deep neural networks
Design
Devices
Geometrical optics
grating coupler
Gratings
Inverse design
Machine learning
Neural networks
Optical coupling
Parameter sensitivity
Photonics
Predictive models
Silicon
silicon photonics
Training
title Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Deep%20Neural%20Network%20Models%20for%20Inverse%20Design%20of%20Silicon%20Photonic%20Grating%20Coupler&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Tu,%20Xin&rft.date=2021-05-01&rft.volume=39&rft.issue=9&rft.spage=2790&rft.epage=2799&rft.pages=2790-2799&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3057473&rft_dat=%3Cproquest_cross%3E2515854479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515854479&rft_id=info:pmid/&rft_ieee_id=9349118&rfr_iscdi=true