Loading…
Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler
Deep neural networks (DNNs) have been introduced to achieve the rapid design of photonic devices by creating a nonlinear function mapping the geometric structure to the optical response. By building the DNN with a finite-difference time-domain (FDTD) solver, we have demonstrated that both forward an...
Saved in:
Published in: | Journal of lightwave technology 2021-05, Vol.39 (9), p.2790-2799 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3 |
container_end_page | 2799 |
container_issue | 9 |
container_start_page | 2790 |
container_title | Journal of lightwave technology |
container_volume | 39 |
creator | Tu, Xin Xie, Wansheng Chen, Zhenmin Ge, Ming-Feng Huang, Tianye Song, Chaolong Fu, H. Y. |
description | Deep neural networks (DNNs) have been introduced to achieve the rapid design of photonic devices by creating a nonlinear function mapping the geometric structure to the optical response. By building the DNN with a finite-difference time-domain (FDTD) solver, we have demonstrated that both forward and inverse design approaches can be used to design efficiently a silicon photonic grating coupler-one of the fundamental silicon photonic devices with a wavelength-sensitive optical response, respectively. A systematic study on the model parameters including number of hidden layers, number of nodes in each layer, initial learning rate, size of training batches, number of evolution epochs, and dataset size/distribution has been carried out to analyze the relationship between the DNNs and the performances of inverse-designed devices. The study shows that the forward design approach based on an optimal forward-modeling network can achieve a peak coupling efficiency with a prediction accuracy as high as 91.7% for the coupler. And the inverse design approach based on an optimal inverse-prediction network can obtain target optical response spectrum as well as provide possibility to get an alternative design for the device. This work is helpful for the designers to improve the machine learning methods and expedite the design progress towards the creation of novel silicon photonic devices. |
doi_str_mv | 10.1109/JLT.2021.3057473 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515854479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9349118</ieee_id><sourcerecordid>2515854479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3</originalsourceid><addsrcrecordid>eNo9kEtLw0AURgdRsFb3gpsB16lz55FkllK1VuoDrEsJk8lNTY2ZOJMo_femtLj6NudcuIeQc2ATAKavHhbLCWccJoKpRCbigIxAqTTiHMQhGbFEiChNuDwmJyGsGQMp02RE3q8bU29CFagr6Q1iS5-w96Yepvt1_pM-ugLrQEvn6bz5QR9wwEK1arbCa1VX1jX05cN1rqksnXnTVc2KTl3f1uhPyVFp6oBn-x2Tt7vb5fQ-WjzP5tPrRWS5hi6Kc-SaydiWeax0WiqEMs9TEbMClLQSRM5jLFiq0RTcQGEhUWhinVsmbFyKMbnc3W29--4xdNna9X74LGRcgUqVlIkeKLajrHcheCyz1ldfxm8yYNk2YjZEzLYRs33EQbnYKRUi_uNaSA2Qij9RCW2V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515854479</pqid></control><display><type>article</type><title>Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tu, Xin ; Xie, Wansheng ; Chen, Zhenmin ; Ge, Ming-Feng ; Huang, Tianye ; Song, Chaolong ; Fu, H. Y.</creator><creatorcontrib>Tu, Xin ; Xie, Wansheng ; Chen, Zhenmin ; Ge, Ming-Feng ; Huang, Tianye ; Song, Chaolong ; Fu, H. Y.</creatorcontrib><description>Deep neural networks (DNNs) have been introduced to achieve the rapid design of photonic devices by creating a nonlinear function mapping the geometric structure to the optical response. By building the DNN with a finite-difference time-domain (FDTD) solver, we have demonstrated that both forward and inverse design approaches can be used to design efficiently a silicon photonic grating coupler-one of the fundamental silicon photonic devices with a wavelength-sensitive optical response, respectively. A systematic study on the model parameters including number of hidden layers, number of nodes in each layer, initial learning rate, size of training batches, number of evolution epochs, and dataset size/distribution has been carried out to analyze the relationship between the DNNs and the performances of inverse-designed devices. The study shows that the forward design approach based on an optimal forward-modeling network can achieve a peak coupling efficiency with a prediction accuracy as high as 91.7% for the coupler. And the inverse design approach based on an optimal inverse-prediction network can obtain target optical response spectrum as well as provide possibility to get an alternative design for the device. This work is helpful for the designers to improve the machine learning methods and expedite the design progress towards the creation of novel silicon photonic devices.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3057473</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Couplers ; Deep neural networks ; Design ; Devices ; Geometrical optics ; grating coupler ; Gratings ; Inverse design ; Machine learning ; Neural networks ; Optical coupling ; Parameter sensitivity ; Photonics ; Predictive models ; Silicon ; silicon photonics ; Training</subject><ispartof>Journal of lightwave technology, 2021-05, Vol.39 (9), p.2790-2799</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3</citedby><cites>FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3</cites><orcidid>0000-0002-4276-0011 ; 0000-0001-9754-9873 ; 0000-0003-4780-3727 ; 0000-0002-2748-6448 ; 0000-0002-6828-0147 ; 0000-0001-5090-0304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9349118$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Tu, Xin</creatorcontrib><creatorcontrib>Xie, Wansheng</creatorcontrib><creatorcontrib>Chen, Zhenmin</creatorcontrib><creatorcontrib>Ge, Ming-Feng</creatorcontrib><creatorcontrib>Huang, Tianye</creatorcontrib><creatorcontrib>Song, Chaolong</creatorcontrib><creatorcontrib>Fu, H. Y.</creatorcontrib><title>Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Deep neural networks (DNNs) have been introduced to achieve the rapid design of photonic devices by creating a nonlinear function mapping the geometric structure to the optical response. By building the DNN with a finite-difference time-domain (FDTD) solver, we have demonstrated that both forward and inverse design approaches can be used to design efficiently a silicon photonic grating coupler-one of the fundamental silicon photonic devices with a wavelength-sensitive optical response, respectively. A systematic study on the model parameters including number of hidden layers, number of nodes in each layer, initial learning rate, size of training batches, number of evolution epochs, and dataset size/distribution has been carried out to analyze the relationship between the DNNs and the performances of inverse-designed devices. The study shows that the forward design approach based on an optimal forward-modeling network can achieve a peak coupling efficiency with a prediction accuracy as high as 91.7% for the coupler. And the inverse design approach based on an optimal inverse-prediction network can obtain target optical response spectrum as well as provide possibility to get an alternative design for the device. This work is helpful for the designers to improve the machine learning methods and expedite the design progress towards the creation of novel silicon photonic devices.</description><subject>Artificial neural networks</subject><subject>Couplers</subject><subject>Deep neural networks</subject><subject>Design</subject><subject>Devices</subject><subject>Geometrical optics</subject><subject>grating coupler</subject><subject>Gratings</subject><subject>Inverse design</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optical coupling</subject><subject>Parameter sensitivity</subject><subject>Photonics</subject><subject>Predictive models</subject><subject>Silicon</subject><subject>silicon photonics</subject><subject>Training</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AURgdRsFb3gpsB16lz55FkllK1VuoDrEsJk8lNTY2ZOJMo_femtLj6NudcuIeQc2ATAKavHhbLCWccJoKpRCbigIxAqTTiHMQhGbFEiChNuDwmJyGsGQMp02RE3q8bU29CFagr6Q1iS5-w96Yepvt1_pM-ugLrQEvn6bz5QR9wwEK1arbCa1VX1jX05cN1rqksnXnTVc2KTl3f1uhPyVFp6oBn-x2Tt7vb5fQ-WjzP5tPrRWS5hi6Kc-SaydiWeax0WiqEMs9TEbMClLQSRM5jLFiq0RTcQGEhUWhinVsmbFyKMbnc3W29--4xdNna9X74LGRcgUqVlIkeKLajrHcheCyz1ldfxm8yYNk2YjZEzLYRs33EQbnYKRUi_uNaSA2Qij9RCW2V</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Tu, Xin</creator><creator>Xie, Wansheng</creator><creator>Chen, Zhenmin</creator><creator>Ge, Ming-Feng</creator><creator>Huang, Tianye</creator><creator>Song, Chaolong</creator><creator>Fu, H. Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4276-0011</orcidid><orcidid>https://orcid.org/0000-0001-9754-9873</orcidid><orcidid>https://orcid.org/0000-0003-4780-3727</orcidid><orcidid>https://orcid.org/0000-0002-2748-6448</orcidid><orcidid>https://orcid.org/0000-0002-6828-0147</orcidid><orcidid>https://orcid.org/0000-0001-5090-0304</orcidid></search><sort><creationdate>20210501</creationdate><title>Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler</title><author>Tu, Xin ; Xie, Wansheng ; Chen, Zhenmin ; Ge, Ming-Feng ; Huang, Tianye ; Song, Chaolong ; Fu, H. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Couplers</topic><topic>Deep neural networks</topic><topic>Design</topic><topic>Devices</topic><topic>Geometrical optics</topic><topic>grating coupler</topic><topic>Gratings</topic><topic>Inverse design</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optical coupling</topic><topic>Parameter sensitivity</topic><topic>Photonics</topic><topic>Predictive models</topic><topic>Silicon</topic><topic>silicon photonics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Xin</creatorcontrib><creatorcontrib>Xie, Wansheng</creatorcontrib><creatorcontrib>Chen, Zhenmin</creatorcontrib><creatorcontrib>Ge, Ming-Feng</creatorcontrib><creatorcontrib>Huang, Tianye</creatorcontrib><creatorcontrib>Song, Chaolong</creatorcontrib><creatorcontrib>Fu, H. Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Xin</au><au>Xie, Wansheng</au><au>Chen, Zhenmin</au><au>Ge, Ming-Feng</au><au>Huang, Tianye</au><au>Song, Chaolong</au><au>Fu, H. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>39</volume><issue>9</issue><spage>2790</spage><epage>2799</epage><pages>2790-2799</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Deep neural networks (DNNs) have been introduced to achieve the rapid design of photonic devices by creating a nonlinear function mapping the geometric structure to the optical response. By building the DNN with a finite-difference time-domain (FDTD) solver, we have demonstrated that both forward and inverse design approaches can be used to design efficiently a silicon photonic grating coupler-one of the fundamental silicon photonic devices with a wavelength-sensitive optical response, respectively. A systematic study on the model parameters including number of hidden layers, number of nodes in each layer, initial learning rate, size of training batches, number of evolution epochs, and dataset size/distribution has been carried out to analyze the relationship between the DNNs and the performances of inverse-designed devices. The study shows that the forward design approach based on an optimal forward-modeling network can achieve a peak coupling efficiency with a prediction accuracy as high as 91.7% for the coupler. And the inverse design approach based on an optimal inverse-prediction network can obtain target optical response spectrum as well as provide possibility to get an alternative design for the device. This work is helpful for the designers to improve the machine learning methods and expedite the design progress towards the creation of novel silicon photonic devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3057473</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4276-0011</orcidid><orcidid>https://orcid.org/0000-0001-9754-9873</orcidid><orcidid>https://orcid.org/0000-0003-4780-3727</orcidid><orcidid>https://orcid.org/0000-0002-2748-6448</orcidid><orcidid>https://orcid.org/0000-0002-6828-0147</orcidid><orcidid>https://orcid.org/0000-0001-5090-0304</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2021-05, Vol.39 (9), p.2790-2799 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_journals_2515854479 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Couplers Deep neural networks Design Devices Geometrical optics grating coupler Gratings Inverse design Machine learning Neural networks Optical coupling Parameter sensitivity Photonics Predictive models Silicon silicon photonics Training |
title | Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Deep%20Neural%20Network%20Models%20for%20Inverse%20Design%20of%20Silicon%20Photonic%20Grating%20Coupler&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Tu,%20Xin&rft.date=2021-05-01&rft.volume=39&rft.issue=9&rft.spage=2790&rft.epage=2799&rft.pages=2790-2799&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3057473&rft_dat=%3Cproquest_cross%3E2515854479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-6be29046cfb6598f5e1fbb8360d154c413b26ed089ead2a1dc175ea69bc03c6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515854479&rft_id=info:pmid/&rft_ieee_id=9349118&rfr_iscdi=true |