Loading…

Weighted K-stability and coercivity with applications to extremal Kahler and Sasaki metrics

We show that a compact weighted extremal Kahler manifold (as defined by the third named author) has coercive weighted Mabuchi energy with respect to a maximal complex torus in the reduced group of complex automorphisms. This provides a vast extension and a unification of a number of results concerni...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-11
Main Authors: Apostolov, Vestislav, Jubert, Simon, Lahdili, Abdellah
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Apostolov, Vestislav
Jubert, Simon
Lahdili, Abdellah
description We show that a compact weighted extremal Kahler manifold (as defined by the third named author) has coercive weighted Mabuchi energy with respect to a maximal complex torus in the reduced group of complex automorphisms. This provides a vast extension and a unification of a number of results concerning Kahler metrics satisfying special curvature conditions, including constant scalar curvature Kahler metrics, extremal Kahler metrics, Kahler-Ricci solitons and their weighted extensions. Our result implies the strict positivity of the weighted Donaldson-Futaki invariant of any non-product equivariant smooth K\"ahler test configuration with reduced central fibre, a property also known as weighted K-polystability on such test configurations. For a class of fibre-bundles, we use our result in conjunction with the recent results of Chen-Cheng, He, and Han-Li in order to characterize the existence of extremal Kahler metrics and Calabi-Yau cones associated to the total space, in terms of the coercivity of the weighted Mabuchi energy of the fibre. In particular, this yields an existence result for Sasaki-Einstein metrics on Fano toric fibrations, extending the results of Futaki-Ono-Wang in the toric Fano case, and of Mabuchi-Nakagawa in the case of Fano projective line bundles.
doi_str_mv 10.48550/arxiv.2104.09709
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2515925061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515925061</sourcerecordid><originalsourceid>FETCH-LOGICAL-a959-13abd94185fdae858025acf0c456cc3fd5330ebbf82a5b73d3895fe34a7bc65f3</originalsourceid><addsrcrecordid>eNotjTtPwzAURi0kJKrSH8BmiTnFr5vYI6p4qZUYqMTAUN04NnFJk2C7pfx7ntOnM5zzEXLB2VxpAHaF8RgOc8GZmjNTMXNCJkJKXmglxBmZpbRljImyEgByQl6eXXhts2voskgZ69CF_Emxb6gdXLTh8IMfIbcUx7ELFnMY-kTzQN0xR7fDji6x7Vz8dZ4w4VugO5djsOmcnHrskpv975Ssb2_Wi_ti9Xj3sLheFWjAFFxi3RjFNfgGnQbNBKD1zCoorZW-ASmZq2uvBUJdyUZqA95JhVVtS_BySi7_smMc3vcu5c122Mf--3EjgIMRwEouvwCoAVWx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515925061</pqid></control><display><type>article</type><title>Weighted K-stability and coercivity with applications to extremal Kahler and Sasaki metrics</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Apostolov, Vestislav ; Jubert, Simon ; Lahdili, Abdellah</creator><creatorcontrib>Apostolov, Vestislav ; Jubert, Simon ; Lahdili, Abdellah</creatorcontrib><description>We show that a compact weighted extremal Kahler manifold (as defined by the third named author) has coercive weighted Mabuchi energy with respect to a maximal complex torus in the reduced group of complex automorphisms. This provides a vast extension and a unification of a number of results concerning Kahler metrics satisfying special curvature conditions, including constant scalar curvature Kahler metrics, extremal Kahler metrics, Kahler-Ricci solitons and their weighted extensions. Our result implies the strict positivity of the weighted Donaldson-Futaki invariant of any non-product equivariant smooth K\"ahler test configuration with reduced central fibre, a property also known as weighted K-polystability on such test configurations. For a class of fibre-bundles, we use our result in conjunction with the recent results of Chen-Cheng, He, and Han-Li in order to characterize the existence of extremal Kahler metrics and Calabi-Yau cones associated to the total space, in terms of the coercivity of the weighted Mabuchi energy of the fibre. In particular, this yields an existence result for Sasaki-Einstein metrics on Fano toric fibrations, extending the results of Futaki-Ono-Wang in the toric Fano case, and of Mabuchi-Nakagawa in the case of Fano projective line bundles.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2104.09709</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Coercivity ; Cones ; Configurations ; Curvature ; Solitary waves ; Toruses</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2515925061?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Apostolov, Vestislav</creatorcontrib><creatorcontrib>Jubert, Simon</creatorcontrib><creatorcontrib>Lahdili, Abdellah</creatorcontrib><title>Weighted K-stability and coercivity with applications to extremal Kahler and Sasaki metrics</title><title>arXiv.org</title><description>We show that a compact weighted extremal Kahler manifold (as defined by the third named author) has coercive weighted Mabuchi energy with respect to a maximal complex torus in the reduced group of complex automorphisms. This provides a vast extension and a unification of a number of results concerning Kahler metrics satisfying special curvature conditions, including constant scalar curvature Kahler metrics, extremal Kahler metrics, Kahler-Ricci solitons and their weighted extensions. Our result implies the strict positivity of the weighted Donaldson-Futaki invariant of any non-product equivariant smooth K\"ahler test configuration with reduced central fibre, a property also known as weighted K-polystability on such test configurations. For a class of fibre-bundles, we use our result in conjunction with the recent results of Chen-Cheng, He, and Han-Li in order to characterize the existence of extremal Kahler metrics and Calabi-Yau cones associated to the total space, in terms of the coercivity of the weighted Mabuchi energy of the fibre. In particular, this yields an existence result for Sasaki-Einstein metrics on Fano toric fibrations, extending the results of Futaki-Ono-Wang in the toric Fano case, and of Mabuchi-Nakagawa in the case of Fano projective line bundles.</description><subject>Automorphisms</subject><subject>Coercivity</subject><subject>Cones</subject><subject>Configurations</subject><subject>Curvature</subject><subject>Solitary waves</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjTtPwzAURi0kJKrSH8BmiTnFr5vYI6p4qZUYqMTAUN04NnFJk2C7pfx7ntOnM5zzEXLB2VxpAHaF8RgOc8GZmjNTMXNCJkJKXmglxBmZpbRljImyEgByQl6eXXhts2voskgZ69CF_Emxb6gdXLTh8IMfIbcUx7ELFnMY-kTzQN0xR7fDji6x7Vz8dZ4w4VugO5djsOmcnHrskpv975Ssb2_Wi_ti9Xj3sLheFWjAFFxi3RjFNfgGnQbNBKD1zCoorZW-ASmZq2uvBUJdyUZqA95JhVVtS_BySi7_smMc3vcu5c122Mf--3EjgIMRwEouvwCoAVWx</recordid><startdate>20221126</startdate><enddate>20221126</enddate><creator>Apostolov, Vestislav</creator><creator>Jubert, Simon</creator><creator>Lahdili, Abdellah</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221126</creationdate><title>Weighted K-stability and coercivity with applications to extremal Kahler and Sasaki metrics</title><author>Apostolov, Vestislav ; Jubert, Simon ; Lahdili, Abdellah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a959-13abd94185fdae858025acf0c456cc3fd5330ebbf82a5b73d3895fe34a7bc65f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automorphisms</topic><topic>Coercivity</topic><topic>Cones</topic><topic>Configurations</topic><topic>Curvature</topic><topic>Solitary waves</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Apostolov, Vestislav</creatorcontrib><creatorcontrib>Jubert, Simon</creatorcontrib><creatorcontrib>Lahdili, Abdellah</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apostolov, Vestislav</au><au>Jubert, Simon</au><au>Lahdili, Abdellah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted K-stability and coercivity with applications to extremal Kahler and Sasaki metrics</atitle><jtitle>arXiv.org</jtitle><date>2022-11-26</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We show that a compact weighted extremal Kahler manifold (as defined by the third named author) has coercive weighted Mabuchi energy with respect to a maximal complex torus in the reduced group of complex automorphisms. This provides a vast extension and a unification of a number of results concerning Kahler metrics satisfying special curvature conditions, including constant scalar curvature Kahler metrics, extremal Kahler metrics, Kahler-Ricci solitons and their weighted extensions. Our result implies the strict positivity of the weighted Donaldson-Futaki invariant of any non-product equivariant smooth K\"ahler test configuration with reduced central fibre, a property also known as weighted K-polystability on such test configurations. For a class of fibre-bundles, we use our result in conjunction with the recent results of Chen-Cheng, He, and Han-Li in order to characterize the existence of extremal Kahler metrics and Calabi-Yau cones associated to the total space, in terms of the coercivity of the weighted Mabuchi energy of the fibre. In particular, this yields an existence result for Sasaki-Einstein metrics on Fano toric fibrations, extending the results of Futaki-Ono-Wang in the toric Fano case, and of Mabuchi-Nakagawa in the case of Fano projective line bundles.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2104.09709</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2515925061
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Automorphisms
Coercivity
Cones
Configurations
Curvature
Solitary waves
Toruses
title Weighted K-stability and coercivity with applications to extremal Kahler and Sasaki metrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20K-stability%20and%20coercivity%20with%20applications%20to%20extremal%20Kahler%20and%20Sasaki%20metrics&rft.jtitle=arXiv.org&rft.au=Apostolov,%20Vestislav&rft.date=2022-11-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2104.09709&rft_dat=%3Cproquest%3E2515925061%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a959-13abd94185fdae858025acf0c456cc3fd5330ebbf82a5b73d3895fe34a7bc65f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515925061&rft_id=info:pmid/&rfr_iscdi=true