Loading…
Large Scale Interactive Motion Forecasting for Autonomous Driving : The Waymo Open Motion Dataset
As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where predicting individual object motion is not sufficient. Joint predictio...
Saved in:
Published in: | arXiv.org 2021-04 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ettinger, Scott Cheng, Shuyang Caine, Benjamin Liu, Chenxi Zhao, Hang Pradhan, Sabeek Chai, Yuning Sapp, Ben Qi, Charles Zhou, Yin Yang, Zoey Chouard, Aurelien Sun, Pei Ngiam, Jiquan Vasudevan, Vijay McCauley, Alexander Shlens, Jonathon Anguelov, Dragomir |
description | As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where predicting individual object motion is not sufficient. Joint predictions of multiple objects are required for effective route planning. There has been a critical need for high-quality motion data that is rich in both interactions and annotation to develop motion planning models. In this work, we introduce the most diverse interactive motion dataset to our knowledge, and provide specific labels for interacting objects suitable for developing joint prediction models. With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways. It was collected by mining for interesting interactions between vehicles, pedestrians, and cyclists across six cities within the United States. We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent, and provide corresponding high definition 3D maps for each scene. Furthermore, we introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models. Finally, we provide strong baseline models for individual-agent prediction and joint-prediction. We hope that this new large-scale interactive motion dataset will provide new opportunities for advancing motion forecasting models. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2515930253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515930253</sourcerecordid><originalsourceid>FETCH-proquest_journals_25159302533</originalsourceid><addsrcrecordid>eNqNi8sKwjAQRYMgWNR_GHAtxMT42okPFBQXCi7LUKY1pWY0SQX_XgXdu7pwzrkNkSitB_3JUKmW6IZQSinVaKyM0YnAHfqC4JhhRbB1kTxm0T4I9hwtO1izpwxDtK6AnD3M68iOr1wHWHr7-OAZnC4EZ3xeGQ43cr_rEiMGih3RzLEK1P1uW_TWq9Ni0795vtcUYlpy7d1bpcoMzFRLZbT-r3oB5m9Ekg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515930253</pqid></control><display><type>article</type><title>Large Scale Interactive Motion Forecasting for Autonomous Driving : The Waymo Open Motion Dataset</title><source>Publicly Available Content Database</source><creator>Ettinger, Scott ; Cheng, Shuyang ; Caine, Benjamin ; Liu, Chenxi ; Zhao, Hang ; Pradhan, Sabeek ; Chai, Yuning ; Sapp, Ben ; Qi, Charles ; Zhou, Yin ; Yang, Zoey ; Chouard, Aurelien ; Sun, Pei ; Ngiam, Jiquan ; Vasudevan, Vijay ; McCauley, Alexander ; Shlens, Jonathon ; Anguelov, Dragomir</creator><creatorcontrib>Ettinger, Scott ; Cheng, Shuyang ; Caine, Benjamin ; Liu, Chenxi ; Zhao, Hang ; Pradhan, Sabeek ; Chai, Yuning ; Sapp, Ben ; Qi, Charles ; Zhou, Yin ; Yang, Zoey ; Chouard, Aurelien ; Sun, Pei ; Ngiam, Jiquan ; Vasudevan, Vijay ; McCauley, Alexander ; Shlens, Jonathon ; Anguelov, Dragomir</creatorcontrib><description>As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where predicting individual object motion is not sufficient. Joint predictions of multiple objects are required for effective route planning. There has been a critical need for high-quality motion data that is rich in both interactions and annotation to develop motion planning models. In this work, we introduce the most diverse interactive motion dataset to our knowledge, and provide specific labels for interacting objects suitable for developing joint prediction models. With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways. It was collected by mining for interesting interactions between vehicles, pedestrians, and cyclists across six cities within the United States. We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent, and provide corresponding high definition 3D maps for each scene. Furthermore, we introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models. Finally, we provide strong baseline models for individual-agent prediction and joint-prediction. We hope that this new large-scale interactive motion dataset will provide new opportunities for advancing motion forecasting models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Datasets ; Forecasting ; High definition ; Labels ; Mathematical models ; Motion planning ; Object motion ; Pedestrians ; Prediction models ; Predictions ; Roads ; Route planning</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2515930253?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Ettinger, Scott</creatorcontrib><creatorcontrib>Cheng, Shuyang</creatorcontrib><creatorcontrib>Caine, Benjamin</creatorcontrib><creatorcontrib>Liu, Chenxi</creatorcontrib><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Pradhan, Sabeek</creatorcontrib><creatorcontrib>Chai, Yuning</creatorcontrib><creatorcontrib>Sapp, Ben</creatorcontrib><creatorcontrib>Qi, Charles</creatorcontrib><creatorcontrib>Zhou, Yin</creatorcontrib><creatorcontrib>Yang, Zoey</creatorcontrib><creatorcontrib>Chouard, Aurelien</creatorcontrib><creatorcontrib>Sun, Pei</creatorcontrib><creatorcontrib>Ngiam, Jiquan</creatorcontrib><creatorcontrib>Vasudevan, Vijay</creatorcontrib><creatorcontrib>McCauley, Alexander</creatorcontrib><creatorcontrib>Shlens, Jonathon</creatorcontrib><creatorcontrib>Anguelov, Dragomir</creatorcontrib><title>Large Scale Interactive Motion Forecasting for Autonomous Driving : The Waymo Open Motion Dataset</title><title>arXiv.org</title><description>As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where predicting individual object motion is not sufficient. Joint predictions of multiple objects are required for effective route planning. There has been a critical need for high-quality motion data that is rich in both interactions and annotation to develop motion planning models. In this work, we introduce the most diverse interactive motion dataset to our knowledge, and provide specific labels for interacting objects suitable for developing joint prediction models. With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways. It was collected by mining for interesting interactions between vehicles, pedestrians, and cyclists across six cities within the United States. We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent, and provide corresponding high definition 3D maps for each scene. Furthermore, we introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models. Finally, we provide strong baseline models for individual-agent prediction and joint-prediction. We hope that this new large-scale interactive motion dataset will provide new opportunities for advancing motion forecasting models.</description><subject>Annotations</subject><subject>Datasets</subject><subject>Forecasting</subject><subject>High definition</subject><subject>Labels</subject><subject>Mathematical models</subject><subject>Motion planning</subject><subject>Object motion</subject><subject>Pedestrians</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Roads</subject><subject>Route planning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi8sKwjAQRYMgWNR_GHAtxMT42okPFBQXCi7LUKY1pWY0SQX_XgXdu7pwzrkNkSitB_3JUKmW6IZQSinVaKyM0YnAHfqC4JhhRbB1kTxm0T4I9hwtO1izpwxDtK6AnD3M68iOr1wHWHr7-OAZnC4EZ3xeGQ43cr_rEiMGih3RzLEK1P1uW_TWq9Ni0795vtcUYlpy7d1bpcoMzFRLZbT-r3oB5m9Ekg</recordid><startdate>20210420</startdate><enddate>20210420</enddate><creator>Ettinger, Scott</creator><creator>Cheng, Shuyang</creator><creator>Caine, Benjamin</creator><creator>Liu, Chenxi</creator><creator>Zhao, Hang</creator><creator>Pradhan, Sabeek</creator><creator>Chai, Yuning</creator><creator>Sapp, Ben</creator><creator>Qi, Charles</creator><creator>Zhou, Yin</creator><creator>Yang, Zoey</creator><creator>Chouard, Aurelien</creator><creator>Sun, Pei</creator><creator>Ngiam, Jiquan</creator><creator>Vasudevan, Vijay</creator><creator>McCauley, Alexander</creator><creator>Shlens, Jonathon</creator><creator>Anguelov, Dragomir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210420</creationdate><title>Large Scale Interactive Motion Forecasting for Autonomous Driving : The Waymo Open Motion Dataset</title><author>Ettinger, Scott ; Cheng, Shuyang ; Caine, Benjamin ; Liu, Chenxi ; Zhao, Hang ; Pradhan, Sabeek ; Chai, Yuning ; Sapp, Ben ; Qi, Charles ; Zhou, Yin ; Yang, Zoey ; Chouard, Aurelien ; Sun, Pei ; Ngiam, Jiquan ; Vasudevan, Vijay ; McCauley, Alexander ; Shlens, Jonathon ; Anguelov, Dragomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25159302533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annotations</topic><topic>Datasets</topic><topic>Forecasting</topic><topic>High definition</topic><topic>Labels</topic><topic>Mathematical models</topic><topic>Motion planning</topic><topic>Object motion</topic><topic>Pedestrians</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Roads</topic><topic>Route planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Ettinger, Scott</creatorcontrib><creatorcontrib>Cheng, Shuyang</creatorcontrib><creatorcontrib>Caine, Benjamin</creatorcontrib><creatorcontrib>Liu, Chenxi</creatorcontrib><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Pradhan, Sabeek</creatorcontrib><creatorcontrib>Chai, Yuning</creatorcontrib><creatorcontrib>Sapp, Ben</creatorcontrib><creatorcontrib>Qi, Charles</creatorcontrib><creatorcontrib>Zhou, Yin</creatorcontrib><creatorcontrib>Yang, Zoey</creatorcontrib><creatorcontrib>Chouard, Aurelien</creatorcontrib><creatorcontrib>Sun, Pei</creatorcontrib><creatorcontrib>Ngiam, Jiquan</creatorcontrib><creatorcontrib>Vasudevan, Vijay</creatorcontrib><creatorcontrib>McCauley, Alexander</creatorcontrib><creatorcontrib>Shlens, Jonathon</creatorcontrib><creatorcontrib>Anguelov, Dragomir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ettinger, Scott</au><au>Cheng, Shuyang</au><au>Caine, Benjamin</au><au>Liu, Chenxi</au><au>Zhao, Hang</au><au>Pradhan, Sabeek</au><au>Chai, Yuning</au><au>Sapp, Ben</au><au>Qi, Charles</au><au>Zhou, Yin</au><au>Yang, Zoey</au><au>Chouard, Aurelien</au><au>Sun, Pei</au><au>Ngiam, Jiquan</au><au>Vasudevan, Vijay</au><au>McCauley, Alexander</au><au>Shlens, Jonathon</au><au>Anguelov, Dragomir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Large Scale Interactive Motion Forecasting for Autonomous Driving : The Waymo Open Motion Dataset</atitle><jtitle>arXiv.org</jtitle><date>2021-04-20</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where predicting individual object motion is not sufficient. Joint predictions of multiple objects are required for effective route planning. There has been a critical need for high-quality motion data that is rich in both interactions and annotation to develop motion planning models. In this work, we introduce the most diverse interactive motion dataset to our knowledge, and provide specific labels for interacting objects suitable for developing joint prediction models. With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways. It was collected by mining for interesting interactions between vehicles, pedestrians, and cyclists across six cities within the United States. We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent, and provide corresponding high definition 3D maps for each scene. Furthermore, we introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models. Finally, we provide strong baseline models for individual-agent prediction and joint-prediction. We hope that this new large-scale interactive motion dataset will provide new opportunities for advancing motion forecasting models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2515930253 |
source | Publicly Available Content Database |
subjects | Annotations Datasets Forecasting High definition Labels Mathematical models Motion planning Object motion Pedestrians Prediction models Predictions Roads Route planning |
title | Large Scale Interactive Motion Forecasting for Autonomous Driving : The Waymo Open Motion Dataset |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Large%20Scale%20Interactive%20Motion%20Forecasting%20for%20Autonomous%20Driving%20:%20The%20Waymo%20Open%20Motion%20Dataset&rft.jtitle=arXiv.org&rft.au=Ettinger,%20Scott&rft.date=2021-04-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2515930253%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25159302533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515930253&rft_id=info:pmid/&rfr_iscdi=true |