Loading…
Cytotoxicity analysis of nanoparticles by association rule mining
Understanding the toxicity behavior of NPs is of great importance to ensure efficient delivery to intracellular targets without causing cytotoxicity, to measure the long-term effects of nanoparticles (NPs), and to predict risks and hazards to humans and the environment. However, the diversity and co...
Saved in:
Published in: | Environmental science. Nano 2021-04, Vol.8 (4), p.937-949 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding the toxicity behavior of NPs is of great importance to ensure efficient delivery to intracellular targets without causing cytotoxicity, to measure the long-term effects of nanoparticles (NPs), and to predict risks and hazards to humans and the environment. However, the diversity and complexity of toxicity sample space, individual sampling, and missing/unreported information make it burdensome to draw general conclusions from the whole picture. To overcome the challenges of
safe-by-design
of NPs, here we create a machine learning approach by knowledge extraction from the literature which is based on the published toxicity data of inorganic, organic and carbon-based NPs. By integrating 15 qualitative and 10 quantitative attributes from 152 articles, we have obtained 4111 instances reflecting the toxicity of NPs with various material, cell, and experimental properties. Implementing association rule mining (ARM), we present that cytotoxicity is primarily related to the core and coating material of NPs, their synthesis route and the exposed cell type. Our model addresses the interdependence of attributes by shedding light on hidden relationships and we claim that it may contribute to the controlled and safe design of NPs in future studies.
A highly comprehensive dataset is analyzed by meta-heuristic association rule mining to reveal hidden variable relationships with nanoparticle toxicity. |
---|---|
ISSN: | 2051-8153 2051-8161 |
DOI: | 10.1039/d0en01240h |