Loading…
eplusr: A framework for integrating building energy simulation and data-driven analytics
[Display omitted] •Developed an R package that integrates EnergyPlus with data-driven analytics.•Structured inputs/outputs format that can be easily piped into data analytics workflows.•Facilitates reproducible simulations through Docker.•Enables flexible and extensible parametric simulations. Build...
Saved in:
Published in: | Energy and buildings 2021-04, Vol.237, p.110757, Article 110757 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3 |
container_end_page | |
container_issue | |
container_start_page | 110757 |
container_title | Energy and buildings |
container_volume | 237 |
creator | Jia, Hongyuan Chong, Adrian |
description | [Display omitted]
•Developed an R package that integrates EnergyPlus with data-driven analytics.•Structured inputs/outputs format that can be easily piped into data analytics workflows.•Facilitates reproducible simulations through Docker.•Enables flexible and extensible parametric simulations.
Building energy simulation (BES) has been widely adopted for the investigation of building environmental and energy performance for different design and retrofit alternatives. Data-driven analytics is vital for interpreting and analyzing BES results to reveal trends and provide useful insights. However, seamless integration between BES and data-driven analytics current does not exist. This paper presents eplusr, an R package for conducting data-driven analytics with EnergyPlus. The R package is cross-platform and distributed using CRAN (The Comprehensive R Archive Network). With a data-centric design philosophy, the proposed framework focuses on better and more seamless integration between BES and data-driven analytics. It provides structured inputs/outputs format that can be easily piped into data analytics workflows. The R package also provides an infrastructure to bring portable and reusable computational environment for building energy modeling to facilitate reproducibility research. |
doi_str_mv | 10.1016/j.enbuild.2021.110757 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516240721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778821000414</els_id><sourcerecordid>2516240721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCHguWsmbZOsF1kWv2DBi4K3kCbTJbXbrkmr7L-3tXv3NF_vvMw8hFwDWwADcVstsCl6X7sFZxwWAEzm8oTMQEmeCJDqlMxYKlUipVLn5CLGijEmcgkz8oH7uo_hjq5oGcwOf9rwScs2UN90uA2m882W_pmPCTYYtgca_a6vh1HbUNM46kxnEhf8N461qQ-dt_GSnJWmjnh1jHPy_vjwtn5ONq9PL-vVJrFpKrsEFXBkQignAZXgIs0tcuMQS4tZ4YzBwiyHDuSwhAxU4bI0Lw0USlrDTTonN5PvPrRfPcZOV20fhiui5jkInjHJYVDlk8qGNsaApd4HvzPhoIHpEaKu9BGiHiHqCeKwdz_t4fDCt8ego_XYWHQ-oO20a_0_Dr-rP38i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516240721</pqid></control><display><type>article</type><title>eplusr: A framework for integrating building energy simulation and data-driven analytics</title><source>ScienceDirect Journals</source><creator>Jia, Hongyuan ; Chong, Adrian</creator><creatorcontrib>Jia, Hongyuan ; Chong, Adrian</creatorcontrib><description>[Display omitted]
•Developed an R package that integrates EnergyPlus with data-driven analytics.•Structured inputs/outputs format that can be easily piped into data analytics workflows.•Facilitates reproducible simulations through Docker.•Enables flexible and extensible parametric simulations.
Building energy simulation (BES) has been widely adopted for the investigation of building environmental and energy performance for different design and retrofit alternatives. Data-driven analytics is vital for interpreting and analyzing BES results to reveal trends and provide useful insights. However, seamless integration between BES and data-driven analytics current does not exist. This paper presents eplusr, an R package for conducting data-driven analytics with EnergyPlus. The R package is cross-platform and distributed using CRAN (The Comprehensive R Archive Network). With a data-centric design philosophy, the proposed framework focuses on better and more seamless integration between BES and data-driven analytics. It provides structured inputs/outputs format that can be easily piped into data analytics workflows. The R package also provides an infrastructure to bring portable and reusable computational environment for building energy modeling to facilitate reproducibility research.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2021.110757</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alternative energy sources ; Archives & records ; Bayesian calibration ; Building energy simulation ; Building performance simulation ; Buildings ; Computer applications ; Data analysis ; Datadriven analytics ; Energy ; Energy modeling ; EnergyPlus ; Environment models ; Integration ; Mathematical analysis ; Optimization ; Parametric simulation ; Retrofitting ; Simulation</subject><ispartof>Energy and buildings, 2021-04, Vol.237, p.110757, Article 110757</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3</citedby><cites>FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jia, Hongyuan</creatorcontrib><creatorcontrib>Chong, Adrian</creatorcontrib><title>eplusr: A framework for integrating building energy simulation and data-driven analytics</title><title>Energy and buildings</title><description>[Display omitted]
•Developed an R package that integrates EnergyPlus with data-driven analytics.•Structured inputs/outputs format that can be easily piped into data analytics workflows.•Facilitates reproducible simulations through Docker.•Enables flexible and extensible parametric simulations.
Building energy simulation (BES) has been widely adopted for the investigation of building environmental and energy performance for different design and retrofit alternatives. Data-driven analytics is vital for interpreting and analyzing BES results to reveal trends and provide useful insights. However, seamless integration between BES and data-driven analytics current does not exist. This paper presents eplusr, an R package for conducting data-driven analytics with EnergyPlus. The R package is cross-platform and distributed using CRAN (The Comprehensive R Archive Network). With a data-centric design philosophy, the proposed framework focuses on better and more seamless integration between BES and data-driven analytics. It provides structured inputs/outputs format that can be easily piped into data analytics workflows. The R package also provides an infrastructure to bring portable and reusable computational environment for building energy modeling to facilitate reproducibility research.</description><subject>Alternative energy sources</subject><subject>Archives & records</subject><subject>Bayesian calibration</subject><subject>Building energy simulation</subject><subject>Building performance simulation</subject><subject>Buildings</subject><subject>Computer applications</subject><subject>Data analysis</subject><subject>Datadriven analytics</subject><subject>Energy</subject><subject>Energy modeling</subject><subject>EnergyPlus</subject><subject>Environment models</subject><subject>Integration</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Parametric simulation</subject><subject>Retrofitting</subject><subject>Simulation</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCHguWsmbZOsF1kWv2DBi4K3kCbTJbXbrkmr7L-3tXv3NF_vvMw8hFwDWwADcVstsCl6X7sFZxwWAEzm8oTMQEmeCJDqlMxYKlUipVLn5CLGijEmcgkz8oH7uo_hjq5oGcwOf9rwScs2UN90uA2m882W_pmPCTYYtgca_a6vh1HbUNM46kxnEhf8N461qQ-dt_GSnJWmjnh1jHPy_vjwtn5ONq9PL-vVJrFpKrsEFXBkQignAZXgIs0tcuMQS4tZ4YzBwiyHDuSwhAxU4bI0Lw0USlrDTTonN5PvPrRfPcZOV20fhiui5jkInjHJYVDlk8qGNsaApd4HvzPhoIHpEaKu9BGiHiHqCeKwdz_t4fDCt8ego_XYWHQ-oO20a_0_Dr-rP38i</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Jia, Hongyuan</creator><creator>Chong, Adrian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20210415</creationdate><title>eplusr: A framework for integrating building energy simulation and data-driven analytics</title><author>Jia, Hongyuan ; Chong, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Archives & records</topic><topic>Bayesian calibration</topic><topic>Building energy simulation</topic><topic>Building performance simulation</topic><topic>Buildings</topic><topic>Computer applications</topic><topic>Data analysis</topic><topic>Datadriven analytics</topic><topic>Energy</topic><topic>Energy modeling</topic><topic>EnergyPlus</topic><topic>Environment models</topic><topic>Integration</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Parametric simulation</topic><topic>Retrofitting</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Hongyuan</creatorcontrib><creatorcontrib>Chong, Adrian</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Hongyuan</au><au>Chong, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>eplusr: A framework for integrating building energy simulation and data-driven analytics</atitle><jtitle>Energy and buildings</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>237</volume><spage>110757</spage><pages>110757-</pages><artnum>110757</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>[Display omitted]
•Developed an R package that integrates EnergyPlus with data-driven analytics.•Structured inputs/outputs format that can be easily piped into data analytics workflows.•Facilitates reproducible simulations through Docker.•Enables flexible and extensible parametric simulations.
Building energy simulation (BES) has been widely adopted for the investigation of building environmental and energy performance for different design and retrofit alternatives. Data-driven analytics is vital for interpreting and analyzing BES results to reveal trends and provide useful insights. However, seamless integration between BES and data-driven analytics current does not exist. This paper presents eplusr, an R package for conducting data-driven analytics with EnergyPlus. The R package is cross-platform and distributed using CRAN (The Comprehensive R Archive Network). With a data-centric design philosophy, the proposed framework focuses on better and more seamless integration between BES and data-driven analytics. It provides structured inputs/outputs format that can be easily piped into data analytics workflows. The R package also provides an infrastructure to bring portable and reusable computational environment for building energy modeling to facilitate reproducibility research.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2021.110757</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7788 |
ispartof | Energy and buildings, 2021-04, Vol.237, p.110757, Article 110757 |
issn | 0378-7788 1872-6178 |
language | eng |
recordid | cdi_proquest_journals_2516240721 |
source | ScienceDirect Journals |
subjects | Alternative energy sources Archives & records Bayesian calibration Building energy simulation Building performance simulation Buildings Computer applications Data analysis Datadriven analytics Energy Energy modeling EnergyPlus Environment models Integration Mathematical analysis Optimization Parametric simulation Retrofitting Simulation |
title | eplusr: A framework for integrating building energy simulation and data-driven analytics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=eplusr:%20A%20framework%20for%20integrating%20building%20energy%20simulation%20and%20data-driven%20analytics&rft.jtitle=Energy%20and%20buildings&rft.au=Jia,%20Hongyuan&rft.date=2021-04-15&rft.volume=237&rft.spage=110757&rft.pages=110757-&rft.artnum=110757&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2021.110757&rft_dat=%3Cproquest_cross%3E2516240721%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2516240721&rft_id=info:pmid/&rfr_iscdi=true |