Loading…

eplusr: A framework for integrating building energy simulation and data-driven analytics

[Display omitted] •Developed an R package that integrates EnergyPlus with data-driven analytics.•Structured inputs/outputs format that can be easily piped into data analytics workflows.•Facilitates reproducible simulations through Docker.•Enables flexible and extensible parametric simulations. Build...

Full description

Saved in:
Bibliographic Details
Published in:Energy and buildings 2021-04, Vol.237, p.110757, Article 110757
Main Authors: Jia, Hongyuan, Chong, Adrian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3
cites cdi_FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3
container_end_page
container_issue
container_start_page 110757
container_title Energy and buildings
container_volume 237
creator Jia, Hongyuan
Chong, Adrian
description [Display omitted] •Developed an R package that integrates EnergyPlus with data-driven analytics.•Structured inputs/outputs format that can be easily piped into data analytics workflows.•Facilitates reproducible simulations through Docker.•Enables flexible and extensible parametric simulations. Building energy simulation (BES) has been widely adopted for the investigation of building environmental and energy performance for different design and retrofit alternatives. Data-driven analytics is vital for interpreting and analyzing BES results to reveal trends and provide useful insights. However, seamless integration between BES and data-driven analytics current does not exist. This paper presents eplusr, an R package for conducting data-driven analytics with EnergyPlus. The R package is cross-platform and distributed using CRAN (The Comprehensive R Archive Network). With a data-centric design philosophy, the proposed framework focuses on better and more seamless integration between BES and data-driven analytics. It provides structured inputs/outputs format that can be easily piped into data analytics workflows. The R package also provides an infrastructure to bring portable and reusable computational environment for building energy modeling to facilitate reproducibility research.
doi_str_mv 10.1016/j.enbuild.2021.110757
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516240721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778821000414</els_id><sourcerecordid>2516240721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCHguWsmbZOsF1kWv2DBi4K3kCbTJbXbrkmr7L-3tXv3NF_vvMw8hFwDWwADcVstsCl6X7sFZxwWAEzm8oTMQEmeCJDqlMxYKlUipVLn5CLGijEmcgkz8oH7uo_hjq5oGcwOf9rwScs2UN90uA2m882W_pmPCTYYtgca_a6vh1HbUNM46kxnEhf8N461qQ-dt_GSnJWmjnh1jHPy_vjwtn5ONq9PL-vVJrFpKrsEFXBkQignAZXgIs0tcuMQS4tZ4YzBwiyHDuSwhAxU4bI0Lw0USlrDTTonN5PvPrRfPcZOV20fhiui5jkInjHJYVDlk8qGNsaApd4HvzPhoIHpEaKu9BGiHiHqCeKwdz_t4fDCt8ego_XYWHQ-oO20a_0_Dr-rP38i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516240721</pqid></control><display><type>article</type><title>eplusr: A framework for integrating building energy simulation and data-driven analytics</title><source>ScienceDirect Journals</source><creator>Jia, Hongyuan ; Chong, Adrian</creator><creatorcontrib>Jia, Hongyuan ; Chong, Adrian</creatorcontrib><description>[Display omitted] •Developed an R package that integrates EnergyPlus with data-driven analytics.•Structured inputs/outputs format that can be easily piped into data analytics workflows.•Facilitates reproducible simulations through Docker.•Enables flexible and extensible parametric simulations. Building energy simulation (BES) has been widely adopted for the investigation of building environmental and energy performance for different design and retrofit alternatives. Data-driven analytics is vital for interpreting and analyzing BES results to reveal trends and provide useful insights. However, seamless integration between BES and data-driven analytics current does not exist. This paper presents eplusr, an R package for conducting data-driven analytics with EnergyPlus. The R package is cross-platform and distributed using CRAN (The Comprehensive R Archive Network). With a data-centric design philosophy, the proposed framework focuses on better and more seamless integration between BES and data-driven analytics. It provides structured inputs/outputs format that can be easily piped into data analytics workflows. The R package also provides an infrastructure to bring portable and reusable computational environment for building energy modeling to facilitate reproducibility research.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2021.110757</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alternative energy sources ; Archives &amp; records ; Bayesian calibration ; Building energy simulation ; Building performance simulation ; Buildings ; Computer applications ; Data analysis ; Datadriven analytics ; Energy ; Energy modeling ; EnergyPlus ; Environment models ; Integration ; Mathematical analysis ; Optimization ; Parametric simulation ; Retrofitting ; Simulation</subject><ispartof>Energy and buildings, 2021-04, Vol.237, p.110757, Article 110757</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3</citedby><cites>FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jia, Hongyuan</creatorcontrib><creatorcontrib>Chong, Adrian</creatorcontrib><title>eplusr: A framework for integrating building energy simulation and data-driven analytics</title><title>Energy and buildings</title><description>[Display omitted] •Developed an R package that integrates EnergyPlus with data-driven analytics.•Structured inputs/outputs format that can be easily piped into data analytics workflows.•Facilitates reproducible simulations through Docker.•Enables flexible and extensible parametric simulations. Building energy simulation (BES) has been widely adopted for the investigation of building environmental and energy performance for different design and retrofit alternatives. Data-driven analytics is vital for interpreting and analyzing BES results to reveal trends and provide useful insights. However, seamless integration between BES and data-driven analytics current does not exist. This paper presents eplusr, an R package for conducting data-driven analytics with EnergyPlus. The R package is cross-platform and distributed using CRAN (The Comprehensive R Archive Network). With a data-centric design philosophy, the proposed framework focuses on better and more seamless integration between BES and data-driven analytics. It provides structured inputs/outputs format that can be easily piped into data analytics workflows. The R package also provides an infrastructure to bring portable and reusable computational environment for building energy modeling to facilitate reproducibility research.</description><subject>Alternative energy sources</subject><subject>Archives &amp; records</subject><subject>Bayesian calibration</subject><subject>Building energy simulation</subject><subject>Building performance simulation</subject><subject>Buildings</subject><subject>Computer applications</subject><subject>Data analysis</subject><subject>Datadriven analytics</subject><subject>Energy</subject><subject>Energy modeling</subject><subject>EnergyPlus</subject><subject>Environment models</subject><subject>Integration</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Parametric simulation</subject><subject>Retrofitting</subject><subject>Simulation</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCHguWsmbZOsF1kWv2DBi4K3kCbTJbXbrkmr7L-3tXv3NF_vvMw8hFwDWwADcVstsCl6X7sFZxwWAEzm8oTMQEmeCJDqlMxYKlUipVLn5CLGijEmcgkz8oH7uo_hjq5oGcwOf9rwScs2UN90uA2m882W_pmPCTYYtgca_a6vh1HbUNM46kxnEhf8N461qQ-dt_GSnJWmjnh1jHPy_vjwtn5ONq9PL-vVJrFpKrsEFXBkQignAZXgIs0tcuMQS4tZ4YzBwiyHDuSwhAxU4bI0Lw0USlrDTTonN5PvPrRfPcZOV20fhiui5jkInjHJYVDlk8qGNsaApd4HvzPhoIHpEaKu9BGiHiHqCeKwdz_t4fDCt8ego_XYWHQ-oO20a_0_Dr-rP38i</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Jia, Hongyuan</creator><creator>Chong, Adrian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20210415</creationdate><title>eplusr: A framework for integrating building energy simulation and data-driven analytics</title><author>Jia, Hongyuan ; Chong, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Archives &amp; records</topic><topic>Bayesian calibration</topic><topic>Building energy simulation</topic><topic>Building performance simulation</topic><topic>Buildings</topic><topic>Computer applications</topic><topic>Data analysis</topic><topic>Datadriven analytics</topic><topic>Energy</topic><topic>Energy modeling</topic><topic>EnergyPlus</topic><topic>Environment models</topic><topic>Integration</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Parametric simulation</topic><topic>Retrofitting</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Hongyuan</creatorcontrib><creatorcontrib>Chong, Adrian</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Hongyuan</au><au>Chong, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>eplusr: A framework for integrating building energy simulation and data-driven analytics</atitle><jtitle>Energy and buildings</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>237</volume><spage>110757</spage><pages>110757-</pages><artnum>110757</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>[Display omitted] •Developed an R package that integrates EnergyPlus with data-driven analytics.•Structured inputs/outputs format that can be easily piped into data analytics workflows.•Facilitates reproducible simulations through Docker.•Enables flexible and extensible parametric simulations. Building energy simulation (BES) has been widely adopted for the investigation of building environmental and energy performance for different design and retrofit alternatives. Data-driven analytics is vital for interpreting and analyzing BES results to reveal trends and provide useful insights. However, seamless integration between BES and data-driven analytics current does not exist. This paper presents eplusr, an R package for conducting data-driven analytics with EnergyPlus. The R package is cross-platform and distributed using CRAN (The Comprehensive R Archive Network). With a data-centric design philosophy, the proposed framework focuses on better and more seamless integration between BES and data-driven analytics. It provides structured inputs/outputs format that can be easily piped into data analytics workflows. The R package also provides an infrastructure to bring portable and reusable computational environment for building energy modeling to facilitate reproducibility research.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2021.110757</doi></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2021-04, Vol.237, p.110757, Article 110757
issn 0378-7788
1872-6178
language eng
recordid cdi_proquest_journals_2516240721
source ScienceDirect Journals
subjects Alternative energy sources
Archives & records
Bayesian calibration
Building energy simulation
Building performance simulation
Buildings
Computer applications
Data analysis
Datadriven analytics
Energy
Energy modeling
EnergyPlus
Environment models
Integration
Mathematical analysis
Optimization
Parametric simulation
Retrofitting
Simulation
title eplusr: A framework for integrating building energy simulation and data-driven analytics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=eplusr:%20A%20framework%20for%20integrating%20building%20energy%20simulation%20and%20data-driven%20analytics&rft.jtitle=Energy%20and%20buildings&rft.au=Jia,%20Hongyuan&rft.date=2021-04-15&rft.volume=237&rft.spage=110757&rft.pages=110757-&rft.artnum=110757&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2021.110757&rft_dat=%3Cproquest_cross%3E2516240721%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-e812e0668d71e862635ce2adeefce4bdaaeba9e2a15191418bd435fa1b87ca2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2516240721&rft_id=info:pmid/&rfr_iscdi=true