Loading…
Artefact-removal algorithms for Fourier domain Quantum Optical Coherence Tomography
Quantum Optical Coherence Tomography (Q-OCT) is a non-classical equivalent of Optical Coherence Tomography and is able to provide a twofold axial resolution increase and immunity to resolution-degrading dispersion. The main drawback of Q-OCT are artefacts which are additional elements that clutter a...
Saved in:
Published in: | arXiv.org 2021-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum Optical Coherence Tomography (Q-OCT) is a non-classical equivalent of Optical Coherence Tomography and is able to provide a twofold axial resolution increase and immunity to resolution-degrading dispersion. The main drawback of Q-OCT are artefacts which are additional elements that clutter an A-scan and lead to a complete loss of structural information for multilayered objects. Whereas there are successful methods for artefact removal in Time-domain Q-OCT, no such scheme has been devised for Fourier-domain Q-OCT (Fd-Q-OCT), although the latter modality - through joint spectrum detection - outputs a lot of useful information on both the system and the imaged object. Here, we propose two algorithms which process a Fd-Q-OCT's joint spectrum into an artefact-free A-scan. We present the theoretical background of these algorithms and show their performance on computer-generated data. The limitations of both algorithms with regards to the experimental system and the imaged object are discussed. |
---|---|
ISSN: | 2331-8422 |