Loading…

Synthesis, characterization and analytical applications of Ni(II) ion-imprinted polymer prepared by N-(2-hydroxyphenyl)acrylamide

In the present study, a novel Ni(II) ion-imprinted polymer (Ni(II)-IIP) was successfully synthesized by copolymerization of N-(2-hydroxyphenyl)acrylamide as a functional monomer, 2,2′-Azobis(2-methylpropionitrile) (AIBN) as an initiator and ethylene glycol dimethacrylate (EGDMA) as a cross-linker in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymer research 2021-05, Vol.28 (5), Article 181
Main Authors: Ahmadi, Ebrahim, Hajifatheali, Hassan, Valipoor, Zeinab, Marefat, Mohamadreza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, a novel Ni(II) ion-imprinted polymer (Ni(II)-IIP) was successfully synthesized by copolymerization of N-(2-hydroxyphenyl)acrylamide as a functional monomer, 2,2′-Azobis(2-methylpropionitrile) (AIBN) as an initiator and ethylene glycol dimethacrylate (EGDMA) as a cross-linker in the attendance of nickel nitrate as a template ion. The nickel ions in the Ni(II)-IIP were eliminated by ethylenediaminetetraacetic acid (EDTA) leaching. The functional monomer, complex and the obtained polymer particles were characterized by 1 H NMR, FT-IR, CHNS, FESEM and the concentration of Ni(II) ions in the solution were determined by flame atomic absorption spectrophotometer (FAAS). The effects of pH, flow rate, temperature, sample concentration, sorbent particle size, desorption eluent conditions, selectivity and reusability on the extraction of Ni(II) ions were surveyed. The results of the study revealed that most favorable pH value for quantitative enrichment was 7 and maximum adsorption capacities of Ni(II) ions on the IIP was 38 mg/g. In addition, the relative standard deviation (RSD) for six separately experiments with a nickel concentration of 20.0 μg/L was 2.72% and limit of detection was found to be 0.7 μg/L.
ISSN:1022-9760
1572-8935
DOI:10.1007/s10965-021-02542-w