Loading…

A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India

The current work addresses issues related to quantitative estimation of precipitation caused by convective clouds, using thermal infrared images, and adaptive regression modeling. The developed methodology has been implemented on the Indian sector during the period 22–25 October 2013. The importance...

Full description

Saved in:
Bibliographic Details
Published in:Modeling earth systems and environment 2021-06, Vol.7 (2), p.1097-1105
Main Authors: Goswami, Barnali, Bhandari, Gupinath, Goswami, Sanjay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23
cites cdi_FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23
container_end_page 1105
container_issue 2
container_start_page 1097
container_title Modeling earth systems and environment
container_volume 7
creator Goswami, Barnali
Bhandari, Gupinath
Goswami, Sanjay
description The current work addresses issues related to quantitative estimation of precipitation caused by convective clouds, using thermal infrared images, and adaptive regression modeling. The developed methodology has been implemented on the Indian sector during the period 22–25 October 2013. The importance of the developed methodology lies in the fact that the information obtained from it can facilitate further studies intended for the prediction of flood events. This study is the continuation of existing work of identification of convective clouds and the analysis of the Mesoscale Convective Systems (MCS). In the current work, forecast of rainfall in terms of millimeter has been proposed. The entire work has been carried out on thermal infrared (TIR) images obtained from geostationary satellites and the results have been validated by actual rainfall data measured by rain gauges. The results obtained from the developed methodology were found to be fairly close to actual values.
doi_str_mv 10.1007/s40808-020-00968-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2517674472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2517674472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23</originalsourceid><addsrcrecordid>eNp9UctO3TAQjSoqFVF-gNVIXQf8SJyYHbriJSF1066tqTO-hObawXaQ-Cs-EedeVHbdeDwz56HRqaozzs45Y91FaljP-poJVjOmVV93X6pjIZWsleD86N-fyW_VaUpPjDGuhFJaH1dvV_C8oM9jxjy-EMyR7Djvu-DBhdJiyrALA02wpNFvwQb_QnZF13YKywA5ov27bkYPCTNN05gJ8iPFHU5l6CJGGmDc4ZYSoB8AB5z3dpG2kVIqXpeAUKwIUl6GV8ApFMHr1XsT1jc4uPfDiN-rrw6nRKcf9aT6fXP9a3NXP_y8vd9cPdRWcp3rXkrFqWFOadJCSeUEyQb_KN622GKvBSvjQTlH1lotlZZtK3jXCaZajUKeVD8OunMMzwulbJ7CEn2xNKLlneqapltR4oCyMaQUyZk5ljvjq-HMrOGYQzimhGP24ZiukOSBlArYbyl-Sv-H9Q4Hs5Ss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517674472</pqid></control><display><type>article</type><title>A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India</title><source>Springer Nature</source><creator>Goswami, Barnali ; Bhandari, Gupinath ; Goswami, Sanjay</creator><creatorcontrib>Goswami, Barnali ; Bhandari, Gupinath ; Goswami, Sanjay</creatorcontrib><description>The current work addresses issues related to quantitative estimation of precipitation caused by convective clouds, using thermal infrared images, and adaptive regression modeling. The developed methodology has been implemented on the Indian sector during the period 22–25 October 2013. The importance of the developed methodology lies in the fact that the information obtained from it can facilitate further studies intended for the prediction of flood events. This study is the continuation of existing work of identification of convective clouds and the analysis of the Mesoscale Convective Systems (MCS). In the current work, forecast of rainfall in terms of millimeter has been proposed. The entire work has been carried out on thermal infrared (TIR) images obtained from geostationary satellites and the results have been validated by actual rainfall data measured by rain gauges. The results obtained from the developed methodology were found to be fairly close to actual values.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-020-00968-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Atmospheric precipitations ; Chemistry and Earth Sciences ; Clouds ; Computer Science ; Convective clouds ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ecosystems ; Environment ; Flood predictions ; Gauges ; Hydrologic data ; Infrared imagery ; Infrared tracking ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Meteorological satellites ; Methodology ; Original Article ; Physics ; Precipitation ; Rain ; Rain gauges ; Rainfall ; Satellite imagery ; Satellite tracking ; Statistics for Engineering ; Synchronous satellites ; Weather forecasting</subject><ispartof>Modeling earth systems and environment, 2021-06, Vol.7 (2), p.1097-1105</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23</citedby><cites>FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23</cites><orcidid>0000-0002-4141-4934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Goswami, Barnali</creatorcontrib><creatorcontrib>Bhandari, Gupinath</creatorcontrib><creatorcontrib>Goswami, Sanjay</creatorcontrib><title>A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>The current work addresses issues related to quantitative estimation of precipitation caused by convective clouds, using thermal infrared images, and adaptive regression modeling. The developed methodology has been implemented on the Indian sector during the period 22–25 October 2013. The importance of the developed methodology lies in the fact that the information obtained from it can facilitate further studies intended for the prediction of flood events. This study is the continuation of existing work of identification of convective clouds and the analysis of the Mesoscale Convective Systems (MCS). In the current work, forecast of rainfall in terms of millimeter has been proposed. The entire work has been carried out on thermal infrared (TIR) images obtained from geostationary satellites and the results have been validated by actual rainfall data measured by rain gauges. The results obtained from the developed methodology were found to be fairly close to actual values.</description><subject>Atmospheric precipitations</subject><subject>Chemistry and Earth Sciences</subject><subject>Clouds</subject><subject>Computer Science</subject><subject>Convective clouds</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Flood predictions</subject><subject>Gauges</subject><subject>Hydrologic data</subject><subject>Infrared imagery</subject><subject>Infrared tracking</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Methodology</subject><subject>Original Article</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rain gauges</subject><subject>Rainfall</subject><subject>Satellite imagery</subject><subject>Satellite tracking</subject><subject>Statistics for Engineering</subject><subject>Synchronous satellites</subject><subject>Weather forecasting</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UctO3TAQjSoqFVF-gNVIXQf8SJyYHbriJSF1066tqTO-hObawXaQ-Cs-EedeVHbdeDwz56HRqaozzs45Y91FaljP-poJVjOmVV93X6pjIZWsleD86N-fyW_VaUpPjDGuhFJaH1dvV_C8oM9jxjy-EMyR7Djvu-DBhdJiyrALA02wpNFvwQb_QnZF13YKywA5ov27bkYPCTNN05gJ8iPFHU5l6CJGGmDc4ZYSoB8AB5z3dpG2kVIqXpeAUKwIUl6GV8ApFMHr1XsT1jc4uPfDiN-rrw6nRKcf9aT6fXP9a3NXP_y8vd9cPdRWcp3rXkrFqWFOadJCSeUEyQb_KN622GKvBSvjQTlH1lotlZZtK3jXCaZajUKeVD8OunMMzwulbJ7CEn2xNKLlneqapltR4oCyMaQUyZk5ljvjq-HMrOGYQzimhGP24ZiukOSBlArYbyl-Sv-H9Q4Hs5Ss</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Goswami, Barnali</creator><creator>Bhandari, Gupinath</creator><creator>Goswami, Sanjay</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-4141-4934</orcidid></search><sort><creationdate>20210601</creationdate><title>A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India</title><author>Goswami, Barnali ; Bhandari, Gupinath ; Goswami, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric precipitations</topic><topic>Chemistry and Earth Sciences</topic><topic>Clouds</topic><topic>Computer Science</topic><topic>Convective clouds</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Flood predictions</topic><topic>Gauges</topic><topic>Hydrologic data</topic><topic>Infrared imagery</topic><topic>Infrared tracking</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Methodology</topic><topic>Original Article</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rain gauges</topic><topic>Rainfall</topic><topic>Satellite imagery</topic><topic>Satellite tracking</topic><topic>Statistics for Engineering</topic><topic>Synchronous satellites</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goswami, Barnali</creatorcontrib><creatorcontrib>Bhandari, Gupinath</creatorcontrib><creatorcontrib>Goswami, Sanjay</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goswami, Barnali</au><au>Bhandari, Gupinath</au><au>Goswami, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>7</volume><issue>2</issue><spage>1097</spage><epage>1105</epage><pages>1097-1105</pages><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>The current work addresses issues related to quantitative estimation of precipitation caused by convective clouds, using thermal infrared images, and adaptive regression modeling. The developed methodology has been implemented on the Indian sector during the period 22–25 October 2013. The importance of the developed methodology lies in the fact that the information obtained from it can facilitate further studies intended for the prediction of flood events. This study is the continuation of existing work of identification of convective clouds and the analysis of the Mesoscale Convective Systems (MCS). In the current work, forecast of rainfall in terms of millimeter has been proposed. The entire work has been carried out on thermal infrared (TIR) images obtained from geostationary satellites and the results have been validated by actual rainfall data measured by rain gauges. The results obtained from the developed methodology were found to be fairly close to actual values.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-020-00968-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4141-4934</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2363-6203
ispartof Modeling earth systems and environment, 2021-06, Vol.7 (2), p.1097-1105
issn 2363-6203
2363-6211
language eng
recordid cdi_proquest_journals_2517674472
source Springer Nature
subjects Atmospheric precipitations
Chemistry and Earth Sciences
Clouds
Computer Science
Convective clouds
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Ecosystems
Environment
Flood predictions
Gauges
Hydrologic data
Infrared imagery
Infrared tracking
Math. Appl. in Environmental Science
Mathematical Applications in the Physical Sciences
Mathematical models
Meteorological satellites
Methodology
Original Article
Physics
Precipitation
Rain
Rain gauges
Rainfall
Satellite imagery
Satellite tracking
Statistics for Engineering
Synchronous satellites
Weather forecasting
title A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantitative%20precipitation%20forecast%20model%20using%20convective-cloud%20tracking%20in%20satellite%20thermal%20infrared%20images%20and%20adaptive%20regression:%20a%20case%20study%20along%20East%20Coast%20of%20India&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=Goswami,%20Barnali&rft.date=2021-06-01&rft.volume=7&rft.issue=2&rft.spage=1097&rft.epage=1105&rft.pages=1097-1105&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-020-00968-7&rft_dat=%3Cproquest_cross%3E2517674472%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2517674472&rft_id=info:pmid/&rfr_iscdi=true