Loading…
A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India
The current work addresses issues related to quantitative estimation of precipitation caused by convective clouds, using thermal infrared images, and adaptive regression modeling. The developed methodology has been implemented on the Indian sector during the period 22–25 October 2013. The importance...
Saved in:
Published in: | Modeling earth systems and environment 2021-06, Vol.7 (2), p.1097-1105 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23 |
container_end_page | 1105 |
container_issue | 2 |
container_start_page | 1097 |
container_title | Modeling earth systems and environment |
container_volume | 7 |
creator | Goswami, Barnali Bhandari, Gupinath Goswami, Sanjay |
description | The current work addresses issues related to quantitative estimation of precipitation caused by convective clouds, using thermal infrared images, and adaptive regression modeling. The developed methodology has been implemented on the Indian sector during the period 22–25 October 2013. The importance of the developed methodology lies in the fact that the information obtained from it can facilitate further studies intended for the prediction of flood events. This study is the continuation of existing work of identification of convective clouds and the analysis of the Mesoscale Convective Systems (MCS). In the current work, forecast of rainfall in terms of millimeter has been proposed. The entire work has been carried out on thermal infrared (TIR) images obtained from geostationary satellites and the results have been validated by actual rainfall data measured by rain gauges. The results obtained from the developed methodology were found to be fairly close to actual values. |
doi_str_mv | 10.1007/s40808-020-00968-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2517674472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2517674472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23</originalsourceid><addsrcrecordid>eNp9UctO3TAQjSoqFVF-gNVIXQf8SJyYHbriJSF1066tqTO-hObawXaQ-Cs-EedeVHbdeDwz56HRqaozzs45Y91FaljP-poJVjOmVV93X6pjIZWsleD86N-fyW_VaUpPjDGuhFJaH1dvV_C8oM9jxjy-EMyR7Djvu-DBhdJiyrALA02wpNFvwQb_QnZF13YKywA5ov27bkYPCTNN05gJ8iPFHU5l6CJGGmDc4ZYSoB8AB5z3dpG2kVIqXpeAUKwIUl6GV8ApFMHr1XsT1jc4uPfDiN-rrw6nRKcf9aT6fXP9a3NXP_y8vd9cPdRWcp3rXkrFqWFOadJCSeUEyQb_KN622GKvBSvjQTlH1lotlZZtK3jXCaZajUKeVD8OunMMzwulbJ7CEn2xNKLlneqapltR4oCyMaQUyZk5ljvjq-HMrOGYQzimhGP24ZiukOSBlArYbyl-Sv-H9Q4Hs5Ss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517674472</pqid></control><display><type>article</type><title>A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India</title><source>Springer Nature</source><creator>Goswami, Barnali ; Bhandari, Gupinath ; Goswami, Sanjay</creator><creatorcontrib>Goswami, Barnali ; Bhandari, Gupinath ; Goswami, Sanjay</creatorcontrib><description>The current work addresses issues related to quantitative estimation of precipitation caused by convective clouds, using thermal infrared images, and adaptive regression modeling. The developed methodology has been implemented on the Indian sector during the period 22–25 October 2013. The importance of the developed methodology lies in the fact that the information obtained from it can facilitate further studies intended for the prediction of flood events. This study is the continuation of existing work of identification of convective clouds and the analysis of the Mesoscale Convective Systems (MCS). In the current work, forecast of rainfall in terms of millimeter has been proposed. The entire work has been carried out on thermal infrared (TIR) images obtained from geostationary satellites and the results have been validated by actual rainfall data measured by rain gauges. The results obtained from the developed methodology were found to be fairly close to actual values.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-020-00968-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Atmospheric precipitations ; Chemistry and Earth Sciences ; Clouds ; Computer Science ; Convective clouds ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ecosystems ; Environment ; Flood predictions ; Gauges ; Hydrologic data ; Infrared imagery ; Infrared tracking ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Meteorological satellites ; Methodology ; Original Article ; Physics ; Precipitation ; Rain ; Rain gauges ; Rainfall ; Satellite imagery ; Satellite tracking ; Statistics for Engineering ; Synchronous satellites ; Weather forecasting</subject><ispartof>Modeling earth systems and environment, 2021-06, Vol.7 (2), p.1097-1105</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23</citedby><cites>FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23</cites><orcidid>0000-0002-4141-4934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Goswami, Barnali</creatorcontrib><creatorcontrib>Bhandari, Gupinath</creatorcontrib><creatorcontrib>Goswami, Sanjay</creatorcontrib><title>A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>The current work addresses issues related to quantitative estimation of precipitation caused by convective clouds, using thermal infrared images, and adaptive regression modeling. The developed methodology has been implemented on the Indian sector during the period 22–25 October 2013. The importance of the developed methodology lies in the fact that the information obtained from it can facilitate further studies intended for the prediction of flood events. This study is the continuation of existing work of identification of convective clouds and the analysis of the Mesoscale Convective Systems (MCS). In the current work, forecast of rainfall in terms of millimeter has been proposed. The entire work has been carried out on thermal infrared (TIR) images obtained from geostationary satellites and the results have been validated by actual rainfall data measured by rain gauges. The results obtained from the developed methodology were found to be fairly close to actual values.</description><subject>Atmospheric precipitations</subject><subject>Chemistry and Earth Sciences</subject><subject>Clouds</subject><subject>Computer Science</subject><subject>Convective clouds</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Flood predictions</subject><subject>Gauges</subject><subject>Hydrologic data</subject><subject>Infrared imagery</subject><subject>Infrared tracking</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Methodology</subject><subject>Original Article</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rain gauges</subject><subject>Rainfall</subject><subject>Satellite imagery</subject><subject>Satellite tracking</subject><subject>Statistics for Engineering</subject><subject>Synchronous satellites</subject><subject>Weather forecasting</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UctO3TAQjSoqFVF-gNVIXQf8SJyYHbriJSF1066tqTO-hObawXaQ-Cs-EedeVHbdeDwz56HRqaozzs45Y91FaljP-poJVjOmVV93X6pjIZWsleD86N-fyW_VaUpPjDGuhFJaH1dvV_C8oM9jxjy-EMyR7Djvu-DBhdJiyrALA02wpNFvwQb_QnZF13YKywA5ov27bkYPCTNN05gJ8iPFHU5l6CJGGmDc4ZYSoB8AB5z3dpG2kVIqXpeAUKwIUl6GV8ApFMHr1XsT1jc4uPfDiN-rrw6nRKcf9aT6fXP9a3NXP_y8vd9cPdRWcp3rXkrFqWFOadJCSeUEyQb_KN622GKvBSvjQTlH1lotlZZtK3jXCaZajUKeVD8OunMMzwulbJ7CEn2xNKLlneqapltR4oCyMaQUyZk5ljvjq-HMrOGYQzimhGP24ZiukOSBlArYbyl-Sv-H9Q4Hs5Ss</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Goswami, Barnali</creator><creator>Bhandari, Gupinath</creator><creator>Goswami, Sanjay</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-4141-4934</orcidid></search><sort><creationdate>20210601</creationdate><title>A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India</title><author>Goswami, Barnali ; Bhandari, Gupinath ; Goswami, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric precipitations</topic><topic>Chemistry and Earth Sciences</topic><topic>Clouds</topic><topic>Computer Science</topic><topic>Convective clouds</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Flood predictions</topic><topic>Gauges</topic><topic>Hydrologic data</topic><topic>Infrared imagery</topic><topic>Infrared tracking</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Methodology</topic><topic>Original Article</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rain gauges</topic><topic>Rainfall</topic><topic>Satellite imagery</topic><topic>Satellite tracking</topic><topic>Statistics for Engineering</topic><topic>Synchronous satellites</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goswami, Barnali</creatorcontrib><creatorcontrib>Bhandari, Gupinath</creatorcontrib><creatorcontrib>Goswami, Sanjay</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goswami, Barnali</au><au>Bhandari, Gupinath</au><au>Goswami, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>7</volume><issue>2</issue><spage>1097</spage><epage>1105</epage><pages>1097-1105</pages><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>The current work addresses issues related to quantitative estimation of precipitation caused by convective clouds, using thermal infrared images, and adaptive regression modeling. The developed methodology has been implemented on the Indian sector during the period 22–25 October 2013. The importance of the developed methodology lies in the fact that the information obtained from it can facilitate further studies intended for the prediction of flood events. This study is the continuation of existing work of identification of convective clouds and the analysis of the Mesoscale Convective Systems (MCS). In the current work, forecast of rainfall in terms of millimeter has been proposed. The entire work has been carried out on thermal infrared (TIR) images obtained from geostationary satellites and the results have been validated by actual rainfall data measured by rain gauges. The results obtained from the developed methodology were found to be fairly close to actual values.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-020-00968-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4141-4934</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2363-6203 |
ispartof | Modeling earth systems and environment, 2021-06, Vol.7 (2), p.1097-1105 |
issn | 2363-6203 2363-6211 |
language | eng |
recordid | cdi_proquest_journals_2517674472 |
source | Springer Nature |
subjects | Atmospheric precipitations Chemistry and Earth Sciences Clouds Computer Science Convective clouds Earth and Environmental Science Earth Sciences Earth System Sciences Ecosystems Environment Flood predictions Gauges Hydrologic data Infrared imagery Infrared tracking Math. Appl. in Environmental Science Mathematical Applications in the Physical Sciences Mathematical models Meteorological satellites Methodology Original Article Physics Precipitation Rain Rain gauges Rainfall Satellite imagery Satellite tracking Statistics for Engineering Synchronous satellites Weather forecasting |
title | A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantitative%20precipitation%20forecast%20model%20using%20convective-cloud%20tracking%20in%20satellite%20thermal%20infrared%20images%20and%20adaptive%20regression:%20a%20case%20study%20along%20East%20Coast%20of%20India&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=Goswami,%20Barnali&rft.date=2021-06-01&rft.volume=7&rft.issue=2&rft.spage=1097&rft.epage=1105&rft.pages=1097-1105&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-020-00968-7&rft_dat=%3Cproquest_cross%3E2517674472%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-83361e40f69e92636f2e34ab6155a5a8920926d6ffeccc9369355217720659a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2517674472&rft_id=info:pmid/&rfr_iscdi=true |