Loading…
Computing Exact Values for Gutman Indices of Sum Graphs under Cartesian Product
Gutman index of a connected graph is a degree-distance-based topological index. In extremal theory of graphs, there is great interest in computing such indices because of their importance in correlating the properties of several chemical compounds. In this paper, we compute the exact formulae of the...
Saved in:
Published in: | Mathematical problems in engineering 2021, Vol.2021, p.1-20 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-de4050a4ec03933b93cf5207defccefa6ec3522b1631f1a2f26d0be3dc1128143 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-de4050a4ec03933b93cf5207defccefa6ec3522b1631f1a2f26d0be3dc1128143 |
container_end_page | 20 |
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Alanazi, Abdulaziz Mohammed Farid, Faiz Javaid, Muhammad Munagi, Augustine |
description | Gutman index of a connected graph is a degree-distance-based topological index. In extremal theory of graphs, there is great interest in computing such indices because of their importance in correlating the properties of several chemical compounds. In this paper, we compute the exact formulae of the Gutman indices for the four sum graphs (S-sum, R-sum, Q-sum, and T-sum) in the terms of various indices of their factor graphs, where sum graphs are obtained under the subdivision operations and Cartesian products of graphs. We also provide specific examples of our results and draw a comparison with previously known bounds for the four sum graphs. |
doi_str_mv | 10.1155/2021/5569997 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518012084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518012084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-de4050a4ec03933b93cf5207defccefa6ec3522b1631f1a2f26d0be3dc1128143</originalsourceid><addsrcrecordid>eNp90FtLwzAUB_AgCs7pmx8g4KPW5SRNuz5KmXMwmOAF30qWi-tYm5oL6rc3Y3v2KYfw41z-CF0DuQfgfEIJhQnnRVVV5QkaAS9YxiEvT1NNaJ4BZR_n6ML7LUmSw3SEVrXthhja_hPPfoQM-F3sovbYWIfnMXSix4tetTJ9WYNfYofnTgwbj2OvtMO1cEH7NqlnZ1WU4RKdGbHz-ur4jtHb4-y1fsqWq_miflhmkrEyZErnhBORa0lYxdi6YtJwSkqljZTaiEJLxildQ8HAgKCGFoqsNVMSgE4hZ2N0c-g7OPuVFg7N1kbXp5ENTYcRoGS6V3cHJZ313mnTDK7thPttgDT7yJp9ZM0xssRvD3zT9kp8t__rPxk1apw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518012084</pqid></control><display><type>article</type><title>Computing Exact Values for Gutman Indices of Sum Graphs under Cartesian Product</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Alanazi, Abdulaziz Mohammed ; Farid, Faiz ; Javaid, Muhammad ; Munagi, Augustine</creator><contributor>Ahmad, Ali ; Ali Ahmad</contributor><creatorcontrib>Alanazi, Abdulaziz Mohammed ; Farid, Faiz ; Javaid, Muhammad ; Munagi, Augustine ; Ahmad, Ali ; Ali Ahmad</creatorcontrib><description>Gutman index of a connected graph is a degree-distance-based topological index. In extremal theory of graphs, there is great interest in computing such indices because of their importance in correlating the properties of several chemical compounds. In this paper, we compute the exact formulae of the Gutman indices for the four sum graphs (S-sum, R-sum, Q-sum, and T-sum) in the terms of various indices of their factor graphs, where sum graphs are obtained under the subdivision operations and Cartesian products of graphs. We also provide specific examples of our results and draw a comparison with previously known bounds for the four sum graphs.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/5569997</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Cartesian coordinates ; Chemical compounds ; Computation ; Graph theory ; Graphs ; Mathematical problems</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-20</ispartof><rights>Copyright © 2021 Abdulaziz Mohammed Alanazi et al.</rights><rights>Copyright © 2021 Abdulaziz Mohammed Alanazi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-de4050a4ec03933b93cf5207defccefa6ec3522b1631f1a2f26d0be3dc1128143</citedby><cites>FETCH-LOGICAL-c337t-de4050a4ec03933b93cf5207defccefa6ec3522b1631f1a2f26d0be3dc1128143</cites><orcidid>0000-0001-7241-8172 ; 0000-0002-7909-2539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2518012084/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2518012084?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Ahmad, Ali</contributor><contributor>Ali Ahmad</contributor><creatorcontrib>Alanazi, Abdulaziz Mohammed</creatorcontrib><creatorcontrib>Farid, Faiz</creatorcontrib><creatorcontrib>Javaid, Muhammad</creatorcontrib><creatorcontrib>Munagi, Augustine</creatorcontrib><title>Computing Exact Values for Gutman Indices of Sum Graphs under Cartesian Product</title><title>Mathematical problems in engineering</title><description>Gutman index of a connected graph is a degree-distance-based topological index. In extremal theory of graphs, there is great interest in computing such indices because of their importance in correlating the properties of several chemical compounds. In this paper, we compute the exact formulae of the Gutman indices for the four sum graphs (S-sum, R-sum, Q-sum, and T-sum) in the terms of various indices of their factor graphs, where sum graphs are obtained under the subdivision operations and Cartesian products of graphs. We also provide specific examples of our results and draw a comparison with previously known bounds for the four sum graphs.</description><subject>Cartesian coordinates</subject><subject>Chemical compounds</subject><subject>Computation</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical problems</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90FtLwzAUB_AgCs7pmx8g4KPW5SRNuz5KmXMwmOAF30qWi-tYm5oL6rc3Y3v2KYfw41z-CF0DuQfgfEIJhQnnRVVV5QkaAS9YxiEvT1NNaJ4BZR_n6ML7LUmSw3SEVrXthhja_hPPfoQM-F3sovbYWIfnMXSix4tetTJ9WYNfYofnTgwbj2OvtMO1cEH7NqlnZ1WU4RKdGbHz-ur4jtHb4-y1fsqWq_miflhmkrEyZErnhBORa0lYxdi6YtJwSkqljZTaiEJLxildQ8HAgKCGFoqsNVMSgE4hZ2N0c-g7OPuVFg7N1kbXp5ENTYcRoGS6V3cHJZ313mnTDK7thPttgDT7yJp9ZM0xssRvD3zT9kp8t__rPxk1apw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Alanazi, Abdulaziz Mohammed</creator><creator>Farid, Faiz</creator><creator>Javaid, Muhammad</creator><creator>Munagi, Augustine</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7241-8172</orcidid><orcidid>https://orcid.org/0000-0002-7909-2539</orcidid></search><sort><creationdate>2021</creationdate><title>Computing Exact Values for Gutman Indices of Sum Graphs under Cartesian Product</title><author>Alanazi, Abdulaziz Mohammed ; Farid, Faiz ; Javaid, Muhammad ; Munagi, Augustine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-de4050a4ec03933b93cf5207defccefa6ec3522b1631f1a2f26d0be3dc1128143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cartesian coordinates</topic><topic>Chemical compounds</topic><topic>Computation</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alanazi, Abdulaziz Mohammed</creatorcontrib><creatorcontrib>Farid, Faiz</creatorcontrib><creatorcontrib>Javaid, Muhammad</creatorcontrib><creatorcontrib>Munagi, Augustine</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alanazi, Abdulaziz Mohammed</au><au>Farid, Faiz</au><au>Javaid, Muhammad</au><au>Munagi, Augustine</au><au>Ahmad, Ali</au><au>Ali Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing Exact Values for Gutman Indices of Sum Graphs under Cartesian Product</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Gutman index of a connected graph is a degree-distance-based topological index. In extremal theory of graphs, there is great interest in computing such indices because of their importance in correlating the properties of several chemical compounds. In this paper, we compute the exact formulae of the Gutman indices for the four sum graphs (S-sum, R-sum, Q-sum, and T-sum) in the terms of various indices of their factor graphs, where sum graphs are obtained under the subdivision operations and Cartesian products of graphs. We also provide specific examples of our results and draw a comparison with previously known bounds for the four sum graphs.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/5569997</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7241-8172</orcidid><orcidid>https://orcid.org/0000-0002-7909-2539</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021, Vol.2021, p.1-20 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2518012084 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database |
subjects | Cartesian coordinates Chemical compounds Computation Graph theory Graphs Mathematical problems |
title | Computing Exact Values for Gutman Indices of Sum Graphs under Cartesian Product |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20Exact%20Values%20for%20Gutman%20Indices%20of%20Sum%20Graphs%20under%20Cartesian%20Product&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Alanazi,%20Abdulaziz%20Mohammed&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/5569997&rft_dat=%3Cproquest_cross%3E2518012084%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-de4050a4ec03933b93cf5207defccefa6ec3522b1631f1a2f26d0be3dc1128143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2518012084&rft_id=info:pmid/&rfr_iscdi=true |