Loading…

Amino-modified Reactive Red 195/P(styrene-co-butyl acrylate-co-trimethyl(vinylbenzyl) ammonium chloride) nanospheres with high coloration performance for enhancing cotton dyeability

Reactive dye is widely used for cotton dyeing, but its low utilization results in vast amounts of colored effluent with high salinity discharge. Amino-modified Reactive Red 195/P(styrene-co-butyl acrylate-co-trimethyl(vinylbenzyl) ammonium chloride) nanospheres (Am-RPNs) are a kind of novel colorant...

Full description

Saved in:
Bibliographic Details
Published in:Textile research journal 2021-05, Vol.91 (9-10), p.1104-1116
Main Authors: Wang, Dongwei, Fang, Kuanjun, Liu, Xiuming, Zhang, Xinqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reactive dye is widely used for cotton dyeing, but its low utilization results in vast amounts of colored effluent with high salinity discharge. Amino-modified Reactive Red 195/P(styrene-co-butyl acrylate-co-trimethyl(vinylbenzyl) ammonium chloride) nanospheres (Am-RPNs) are a kind of novel colorant that exhibit excellent dyeing ability for cotton fabrics and higher dye utilization than original reactive dyes. The colored polymer nanospheres demonstrated small size, high stability and dye content in the dispersion system when cationic polymer nanospheres were dyed at an optimal dye dosage of 100%. Transmission electron microscopy images showed that the polymer nanospheres have smooth spherical shapes. Am-RPNs with an average hydration diameter of 96.5 nm and zeta potential of −33.7 mV were fabricated after being modified with ethylenediamine at pH 11. Both analytical techniques, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, indicated the presence of –NH2 on the surface of Am-RPNs. The amino-modification mechanism of the Reactive Red 195/P(styrene-co-butyl acrylate-co-trimethyl(vinylbenzyl) ammonium chloride) nanospheres depended on the dyeing bath pH. The color depths of the cotton fabrics dyed with Am-RPNs reached up to 3.1 times higher than those with Reactive Red 195. Scanning electron microscopy images showed that Am-RPNs form stable deposits on the surface of the modified fibers. The cotton fabrics dyed with Am-RPNs possessed excellent rubbing and washing fastness, satisfactory light fastness, and desirable handle. This study provides an innovative method that employ Am-RPNs with high coloration performance to endow the cotton fabric with deep color and good colorfastness without using inorganic salt.
ISSN:0040-5175
1746-7748
DOI:10.1177/0040517520974043