Loading…
In situ nanoscale visualization of solvent effects on molecular crystal surfaces
Solvents can dramatically affect molecular crystals. Obtaining favorable properties for these crystals requires rational design based on molecular level understanding of the solid–solution interface. Here we show how atomic force microscopy combined with molecular dynamics simulations can be utilize...
Saved in:
Published in: | CrystEngComm 2021-01, Vol.23 (16), p.2933-2937 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solvents can dramatically affect molecular crystals. Obtaining favorable properties for these crystals requires rational design based on molecular level understanding of the solid–solution interface. Here we show how atomic force microscopy combined with molecular dynamics simulations can be utilized for understanding critical surface properties, namely crystallinity and hydrophobicity, as crystals are exposed to water–ethanol mixtures. We report the formation of dynamic heterogeneous disordered surface (DHDS) layers at the solid–solution interface. The observed DHDS layer was affected by the solvent composition and a variation in the water–ethanol ratio caused significant changes in surface properties. |
---|---|
ISSN: | 1466-8033 1466-8033 |
DOI: | 10.1039/D1CE00209K |