Loading…
Proportional-Integral-Derivative Gain-Scheduling Control of a Magnetic Levitation System
The paper presents a gain-scheduling control design procedure for classical Proportional-Integral-Derivative controllers (PID-GS-C) for positioning system. The method is applied to a Magnetic Levitation System with Two Electromagnets (MLS2EM) laboratory equipment, which allows several experimental v...
Saved in:
Published in: | International journal of computers, communications & control communications & control, 2017-10, Vol.12 (5) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper presents a gain-scheduling control design procedure for classical Proportional-Integral-Derivative controllers (PID-GS-C) for positioning system. The method is applied to a Magnetic Levitation System with Two Electromagnets (MLS2EM) laboratory equipment, which allows several experimental verifications of the proposed solution. The nonlinear model of MLS2EM is linearized at seven operating points. A state feedback control structure is first designed to stabilize the process. PID control and PID-GS-C structures are next designed to ensure zero steady-state control error and bumpless switching between PID controllers for the linearized models. Real-time experimental results are presented for validation.Ă‚ |
---|---|
ISSN: | 1841-9836 1841-9844 |
DOI: | 10.15837/ijccc.2017.5.2770 |