Loading…
A Singleton Type-1 Fuzzy Logic Controller for On-Line Error Compensation During Robotic Welding
During robot welding operations in the manufacturing industry there is a need to modify on-line the welding path due to a mismatch in the position of the components to be welded. These positioning errors are due to multiple factors such as ageing of the components in the conveyor system, clamp fixtu...
Saved in:
Published in: | International journal of computers, communications & control communications & control, 2017-04, Vol.12 (2) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | During robot welding operations in the manufacturing industry there is a need to modify on-line the welding path due to a mismatch in the position of the components to be welded. These positioning errors are due to multiple factors such as ageing of the components in the conveyor system, clamp fixtures, disturbances, etc. Therefore, robot reprogramming is needed which requires a stop in the production line and consequently an increment in production costs. This article is an extension of [1]a and presents an alternative solution to this problem that involves the use of structured lighting using a low-cost laser beam, a CMOS camera and a Gaussian singleton fuzzy logic controller. To validate the proposed control system, a robotic cell was designed using an industrial KUKA KR16 robot for welding metallic plates. The method was evaluated experimentally under lateral and vertical positioning errors. |
---|---|
ISSN: | 1841-9836 1841-9844 |
DOI: | 10.15837/ijccc.2017.2.2877 |