Loading…
A Homogeneous Algorithm for Motion Estimation and Compensation by Using Cellular Neural Networks
In this paper we present an original implementation of a homogeneous algorithm for motion estimation and compensation in image sequences, by using Cellular Neural Networks (CNN). The CNN has been proven their efficiency in real-time image processing, because they can be implemented on a CNN chip or...
Saved in:
Published in: | International journal of computers, communications & control communications & control, 2010-12, Vol.5 (5), p.719 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we present an original implementation of a homogeneous algorithm for motion estimation and compensation in image sequences, by using Cellular Neural Networks (CNN). The CNN has been proven their efficiency in real-time image processing, because they can be implemented on a CNN chip or they can be emulated on Field Programmable Gate Array (FPGA). The motion information is obtained by using a CNN implementation of the well-known Horn & Schunck method. This information is further used in a CNN implementation of a motion-compensation method. Through our algorithm we obtain a homogeneous implementation for real-time applications in artificial vision or medical imaging. The algorithm is illustrated on some classical sequences and the results confirm the validity of our algorithm. |
---|---|
ISSN: | 1841-9836 1841-9844 |
DOI: | 10.15837/ijccc.2010.5.2231 |