Loading…
Implementation of the Timetable Problem Using Self-assembly of DNA Tiles
DNA self-assembly is a promising paradigm for nanotechnology. Recently, many researches demonstrate that computation by self-assembly of DNA tiles may be scalable. In this paper, we show how the tile self-assembly process can be used for implementing the timetable problem. First the timetable proble...
Saved in:
Published in: | International journal of computers, communications & control communications & control, 2010-11, Vol.5 (4), p.490 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | DNA self-assembly is a promising paradigm for nanotechnology. Recently, many researches demonstrate that computation by self-assembly of DNA tiles may be scalable. In this paper, we show how the tile self-assembly process can be used for implementing the timetable problem. First the timetable problem can be converted into the graph edge coloring problem with some constraints, then we give the tile self-assembly model by constructing three small systems including nondeterministic assigning system, copy system and detection system to perform the graph edge coloring problem, thus the algorithm is proposed which can be successfully solved the timetable problem with the computation time complexity ofΘ(mn), parallely and at very low cost. |
---|---|
ISSN: | 1841-9836 1841-9844 |
DOI: | 10.15837/ijccc.2010.4.2507 |