Loading…

Carbon doping-induced defect centers in anodized alumina with enhanced optically stimulated luminescence

Anodized aluminum oxide (AAO) in amorphous form is shown to be a prospective phosphor for optically stimulated luminescence (OSL) by implanting 50 keV carbon ions at a fluence of 1 × 10 16  ions/cm 2 at room temperature. An almost 20-fold enhancement in continuous wave OSL (CW-OSL) sensitivity is ob...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2021-04, Vol.32 (8), p.10635-10643
Main Authors: Bhowmick, S., Pal, S., Singh, A., Khan, S. A., Mishra, D. R., Choudhary, R. J., Phase, D. M., Chini, T. K., Bakshi, A. K., Kanjilal, Aloke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-d902272dc45e158b1a22e960ceb878481ff0c9f2469b82ece9849df59d1137423
container_end_page 10643
container_issue 8
container_start_page 10635
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Bhowmick, S.
Pal, S.
Singh, A.
Khan, S. A.
Mishra, D. R.
Choudhary, R. J.
Phase, D. M.
Chini, T. K.
Bakshi, A. K.
Kanjilal, Aloke
description Anodized aluminum oxide (AAO) in amorphous form is shown to be a prospective phosphor for optically stimulated luminescence (OSL) by implanting 50 keV carbon ions at a fluence of 1 × 10 16  ions/cm 2 at room temperature. An almost 20-fold enhancement in continuous wave OSL (CW-OSL) sensitivity is obtained in carbon-doped AAO (C:AAO) by exposing to beta radiation, while an almost linear increase in CW-OSL intensity is recorded with increasing dose from 0.3 to 5 Gy. However, cathodoluminescence (CL) suggests an upsurge of oxygen vacancies, especially F + and F 2 2+ centers, at the cost of F center-related defects in C:AAO. Detailed X-ray photoelectron spectroscopy (XPS) analysis further reveals that the implanted carbon atoms can act as cationic impurities in AAO and stabilize the nearby F + centers via substitution of Al 3+  by C 2+ . The combined CL and XPS results are also shown to be capable of illustrating the CW-OSL response. This study would, therefore, be a benchmark for understanding the role of carbon in the substitutional sites of AAO for generating OSL active electron traps.
doi_str_mv 10.1007/s10854-021-05719-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518557804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518557804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d902272dc45e158b1a22e960ceb878481ff0c9f2469b82ece9849df59d1137423</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52iSTZrkKMUvKHhR8BayyWybss2uyS5Sf73bruDN08DM874DD0LXlNxSQuRdpkQJjgmjmAhJNZYnaEaFLDFX7OMUzYgWEnPB2Dm6yHlLCFnwUs3QZmlT1cbCt12IaxyiHxz4wkMNri8cxB5SLkIsbGx9-B5Pthl2IdriK_SbAuLGxkOg7frgbNPsi9yH3dDYflweSchji4NLdFbbJsPV75yj98eHt-UzXr0-vSzvV9gxSXrsNWFMMu-4ACpURS1joBfEQaWk4orWNXG6ZnyhK8XAgVZc-1poT2kpOSvn6Gbq7VL7OUDuzbYdUhxfGiaoEkIqwkeKTZRLbc4JatOlsLNpbygxB6NmMmpGo-Zo1MgxVE6hPMJxDemv-p_UD_ZFem4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518557804</pqid></control><display><type>article</type><title>Carbon doping-induced defect centers in anodized alumina with enhanced optically stimulated luminescence</title><source>Springer Nature</source><creator>Bhowmick, S. ; Pal, S. ; Singh, A. ; Khan, S. A. ; Mishra, D. R. ; Choudhary, R. J. ; Phase, D. M. ; Chini, T. K. ; Bakshi, A. K. ; Kanjilal, Aloke</creator><creatorcontrib>Bhowmick, S. ; Pal, S. ; Singh, A. ; Khan, S. A. ; Mishra, D. R. ; Choudhary, R. J. ; Phase, D. M. ; Chini, T. K. ; Bakshi, A. K. ; Kanjilal, Aloke</creatorcontrib><description>Anodized aluminum oxide (AAO) in amorphous form is shown to be a prospective phosphor for optically stimulated luminescence (OSL) by implanting 50 keV carbon ions at a fluence of 1 × 10 16  ions/cm 2 at room temperature. An almost 20-fold enhancement in continuous wave OSL (CW-OSL) sensitivity is obtained in carbon-doped AAO (C:AAO) by exposing to beta radiation, while an almost linear increase in CW-OSL intensity is recorded with increasing dose from 0.3 to 5 Gy. However, cathodoluminescence (CL) suggests an upsurge of oxygen vacancies, especially F + and F 2 2+ centers, at the cost of F center-related defects in C:AAO. Detailed X-ray photoelectron spectroscopy (XPS) analysis further reveals that the implanted carbon atoms can act as cationic impurities in AAO and stabilize the nearby F + centers via substitution of Al 3+  by C 2+ . The combined CL and XPS results are also shown to be capable of illustrating the CW-OSL response. This study would, therefore, be a benchmark for understanding the role of carbon in the substitutional sites of AAO for generating OSL active electron traps.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05719-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum oxide ; Beta rays ; Carbon ; Cathodoluminescence ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Continuous radiation ; Electron traps ; Fluence ; Luminescence ; Materials Science ; Optical and Electronic Materials ; Phosphors ; Photoelectrons ; Room temperature ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials science. Materials in electronics, 2021-04, Vol.32 (8), p.10635-10643</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d902272dc45e158b1a22e960ceb878481ff0c9f2469b82ece9849df59d1137423</cites><orcidid>0000-0002-0805-4527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bhowmick, S.</creatorcontrib><creatorcontrib>Pal, S.</creatorcontrib><creatorcontrib>Singh, A.</creatorcontrib><creatorcontrib>Khan, S. A.</creatorcontrib><creatorcontrib>Mishra, D. R.</creatorcontrib><creatorcontrib>Choudhary, R. J.</creatorcontrib><creatorcontrib>Phase, D. M.</creatorcontrib><creatorcontrib>Chini, T. K.</creatorcontrib><creatorcontrib>Bakshi, A. K.</creatorcontrib><creatorcontrib>Kanjilal, Aloke</creatorcontrib><title>Carbon doping-induced defect centers in anodized alumina with enhanced optically stimulated luminescence</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Anodized aluminum oxide (AAO) in amorphous form is shown to be a prospective phosphor for optically stimulated luminescence (OSL) by implanting 50 keV carbon ions at a fluence of 1 × 10 16  ions/cm 2 at room temperature. An almost 20-fold enhancement in continuous wave OSL (CW-OSL) sensitivity is obtained in carbon-doped AAO (C:AAO) by exposing to beta radiation, while an almost linear increase in CW-OSL intensity is recorded with increasing dose from 0.3 to 5 Gy. However, cathodoluminescence (CL) suggests an upsurge of oxygen vacancies, especially F + and F 2 2+ centers, at the cost of F center-related defects in C:AAO. Detailed X-ray photoelectron spectroscopy (XPS) analysis further reveals that the implanted carbon atoms can act as cationic impurities in AAO and stabilize the nearby F + centers via substitution of Al 3+  by C 2+ . The combined CL and XPS results are also shown to be capable of illustrating the CW-OSL response. This study would, therefore, be a benchmark for understanding the role of carbon in the substitutional sites of AAO for generating OSL active electron traps.</description><subject>Aluminum oxide</subject><subject>Beta rays</subject><subject>Carbon</subject><subject>Cathodoluminescence</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Continuous radiation</subject><subject>Electron traps</subject><subject>Fluence</subject><subject>Luminescence</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Phosphors</subject><subject>Photoelectrons</subject><subject>Room temperature</subject><subject>X ray photoelectron spectroscopy</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52iSTZrkKMUvKHhR8BayyWybss2uyS5Sf73bruDN08DM874DD0LXlNxSQuRdpkQJjgmjmAhJNZYnaEaFLDFX7OMUzYgWEnPB2Dm6yHlLCFnwUs3QZmlT1cbCt12IaxyiHxz4wkMNri8cxB5SLkIsbGx9-B5Pthl2IdriK_SbAuLGxkOg7frgbNPsi9yH3dDYflweSchji4NLdFbbJsPV75yj98eHt-UzXr0-vSzvV9gxSXrsNWFMMu-4ACpURS1joBfEQaWk4orWNXG6ZnyhK8XAgVZc-1poT2kpOSvn6Gbq7VL7OUDuzbYdUhxfGiaoEkIqwkeKTZRLbc4JatOlsLNpbygxB6NmMmpGo-Zo1MgxVE6hPMJxDemv-p_UD_ZFem4</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Bhowmick, S.</creator><creator>Pal, S.</creator><creator>Singh, A.</creator><creator>Khan, S. A.</creator><creator>Mishra, D. R.</creator><creator>Choudhary, R. J.</creator><creator>Phase, D. M.</creator><creator>Chini, T. K.</creator><creator>Bakshi, A. K.</creator><creator>Kanjilal, Aloke</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0805-4527</orcidid></search><sort><creationdate>20210401</creationdate><title>Carbon doping-induced defect centers in anodized alumina with enhanced optically stimulated luminescence</title><author>Bhowmick, S. ; Pal, S. ; Singh, A. ; Khan, S. A. ; Mishra, D. R. ; Choudhary, R. J. ; Phase, D. M. ; Chini, T. K. ; Bakshi, A. K. ; Kanjilal, Aloke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d902272dc45e158b1a22e960ceb878481ff0c9f2469b82ece9849df59d1137423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Beta rays</topic><topic>Carbon</topic><topic>Cathodoluminescence</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Continuous radiation</topic><topic>Electron traps</topic><topic>Fluence</topic><topic>Luminescence</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Phosphors</topic><topic>Photoelectrons</topic><topic>Room temperature</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhowmick, S.</creatorcontrib><creatorcontrib>Pal, S.</creatorcontrib><creatorcontrib>Singh, A.</creatorcontrib><creatorcontrib>Khan, S. A.</creatorcontrib><creatorcontrib>Mishra, D. R.</creatorcontrib><creatorcontrib>Choudhary, R. J.</creatorcontrib><creatorcontrib>Phase, D. M.</creatorcontrib><creatorcontrib>Chini, T. K.</creatorcontrib><creatorcontrib>Bakshi, A. K.</creatorcontrib><creatorcontrib>Kanjilal, Aloke</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhowmick, S.</au><au>Pal, S.</au><au>Singh, A.</au><au>Khan, S. A.</au><au>Mishra, D. R.</au><au>Choudhary, R. J.</au><au>Phase, D. M.</au><au>Chini, T. K.</au><au>Bakshi, A. K.</au><au>Kanjilal, Aloke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon doping-induced defect centers in anodized alumina with enhanced optically stimulated luminescence</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>32</volume><issue>8</issue><spage>10635</spage><epage>10643</epage><pages>10635-10643</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Anodized aluminum oxide (AAO) in amorphous form is shown to be a prospective phosphor for optically stimulated luminescence (OSL) by implanting 50 keV carbon ions at a fluence of 1 × 10 16  ions/cm 2 at room temperature. An almost 20-fold enhancement in continuous wave OSL (CW-OSL) sensitivity is obtained in carbon-doped AAO (C:AAO) by exposing to beta radiation, while an almost linear increase in CW-OSL intensity is recorded with increasing dose from 0.3 to 5 Gy. However, cathodoluminescence (CL) suggests an upsurge of oxygen vacancies, especially F + and F 2 2+ centers, at the cost of F center-related defects in C:AAO. Detailed X-ray photoelectron spectroscopy (XPS) analysis further reveals that the implanted carbon atoms can act as cationic impurities in AAO and stabilize the nearby F + centers via substitution of Al 3+  by C 2+ . The combined CL and XPS results are also shown to be capable of illustrating the CW-OSL response. This study would, therefore, be a benchmark for understanding the role of carbon in the substitutional sites of AAO for generating OSL active electron traps.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05719-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0805-4527</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-04, Vol.32 (8), p.10635-10643
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2518557804
source Springer Nature
subjects Aluminum oxide
Beta rays
Carbon
Cathodoluminescence
Characterization and Evaluation of Materials
Chemistry and Materials Science
Continuous radiation
Electron traps
Fluence
Luminescence
Materials Science
Optical and Electronic Materials
Phosphors
Photoelectrons
Room temperature
X ray photoelectron spectroscopy
title Carbon doping-induced defect centers in anodized alumina with enhanced optically stimulated luminescence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20doping-induced%20defect%20centers%20in%20anodized%20alumina%20with%20enhanced%20optically%20stimulated%20luminescence&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Bhowmick,%20S.&rft.date=2021-04-01&rft.volume=32&rft.issue=8&rft.spage=10635&rft.epage=10643&rft.pages=10635-10643&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05719-7&rft_dat=%3Cproquest_cross%3E2518557804%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-d902272dc45e158b1a22e960ceb878481ff0c9f2469b82ece9849df59d1137423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2518557804&rft_id=info:pmid/&rfr_iscdi=true