Loading…

Investigation of pulsed laser deposited ZnO and TiO2 binary thin film nanostructures using electrochemical impedance spectroscopy

The paper presents the preparation of nanostructured ZnO and TiO 2 binary thin films by pulsed laser deposition at different temperatures ranging from 298 K (as deposited) to 923 K. The films have been characterized by SEM, EDAX, XRD, and UV. The presence of nanospheres is detected by SEM. The XRD s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2021-04, Vol.32 (8), p.11173-11182
Main Authors: John Chelliah, Cyril Robinson Azariah, Immanuel, Sheebha, Swaminathan, Rajesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-982ed31c41b3f14272150ccdcc78d0bfadbb0d3ef04dbc7b0e0cc76dad6376b93
cites cdi_FETCH-LOGICAL-c319t-982ed31c41b3f14272150ccdcc78d0bfadbb0d3ef04dbc7b0e0cc76dad6376b93
container_end_page 11182
container_issue 8
container_start_page 11173
container_title Journal of materials science. Materials in electronics
container_volume 32
creator John Chelliah, Cyril Robinson Azariah
Immanuel, Sheebha
Swaminathan, Rajesh
description The paper presents the preparation of nanostructured ZnO and TiO 2 binary thin films by pulsed laser deposition at different temperatures ranging from 298 K (as deposited) to 923 K. The films have been characterized by SEM, EDAX, XRD, and UV. The presence of nanospheres is detected by SEM. The XRD spectra extrapolates the film's amorphous existence below 773 K. Thin film deposited at 923 K confirmed ZnTiO 3 formation. The optical energy band gap measured by the Tauc plot was found to be 3.7–3.9 eV. The electrochemical impedance spectroscopy with a sweeping frequency of 1 Hz to 1 MHz was used to examine the films for temperatures between 298 K and 473 K. The EIS results revealed that these films have not denied an impedance and modulus relaxation. Activation energy dependent on impedance and module relaxation was calculated from the Arrhenius plot. The mean capacitance was obtained and statistically tested using the SPSS statistics software tool.
doi_str_mv 10.1007/s10854-021-05782-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518560027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518560027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-982ed31c41b3f14272150ccdcc78d0bfadbb0d3ef04dbc7b0e0cc76dad6376b93</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8VydJ27RHWfxYWNjLCuIlpEm6m6Wb1iQVPPrPjVvBm6dhmPcx7yF0TeCWAPC7QKAq8gwoyaDgFc3gBM1IwVmWV_T1FM2gLniWF5Seo4sQ9gBQ5qyaoa-l-zAh2q2Mtne4b_EwdsFo3MlgPNZm6IONaX9zayydxhu7prixTvpPHHfW4dZ2B-yk60P0o4qjNwGPwbotNp1R0fdqZw5WyQ7bw2C0dMrgMBwvQfXD5yU6a2WyvPqdc_Ty-LBZPGer9dNycb_KFCN1zOqKGs2IyknDWpJTTkkBSmmleKWhaaVuGtDMtJDrRvEGTLryUktdMl42NZujm0l38P37mDKLfT96lywFLUhVlACUJxSdUCq9F7xpxeDtIYUVBMRP1WKqWqSqxbFqAYnEJlJIYLc1_k_6H9Y3z9mFhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518560027</pqid></control><display><type>article</type><title>Investigation of pulsed laser deposited ZnO and TiO2 binary thin film nanostructures using electrochemical impedance spectroscopy</title><source>Springer Nature</source><creator>John Chelliah, Cyril Robinson Azariah ; Immanuel, Sheebha ; Swaminathan, Rajesh</creator><creatorcontrib>John Chelliah, Cyril Robinson Azariah ; Immanuel, Sheebha ; Swaminathan, Rajesh</creatorcontrib><description>The paper presents the preparation of nanostructured ZnO and TiO 2 binary thin films by pulsed laser deposition at different temperatures ranging from 298 K (as deposited) to 923 K. The films have been characterized by SEM, EDAX, XRD, and UV. The presence of nanospheres is detected by SEM. The XRD spectra extrapolates the film's amorphous existence below 773 K. Thin film deposited at 923 K confirmed ZnTiO 3 formation. The optical energy band gap measured by the Tauc plot was found to be 3.7–3.9 eV. The electrochemical impedance spectroscopy with a sweeping frequency of 1 Hz to 1 MHz was used to examine the films for temperatures between 298 K and 473 K. The EIS results revealed that these films have not denied an impedance and modulus relaxation. Activation energy dependent on impedance and module relaxation was calculated from the Arrhenius plot. The mean capacitance was obtained and statistically tested using the SPSS statistics software tool.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05782-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrochemical impedance spectroscopy ; Energy bands ; Energy gap ; Materials Science ; Nanospheres ; Optical and Electronic Materials ; Pulsed laser deposition ; Pulsed lasers ; Software ; Software development tools ; Spectrum analysis ; Thin films ; Titanium dioxide ; Zinc oxide</subject><ispartof>Journal of materials science. Materials in electronics, 2021-04, Vol.32 (8), p.11173-11182</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-982ed31c41b3f14272150ccdcc78d0bfadbb0d3ef04dbc7b0e0cc76dad6376b93</citedby><cites>FETCH-LOGICAL-c319t-982ed31c41b3f14272150ccdcc78d0bfadbb0d3ef04dbc7b0e0cc76dad6376b93</cites><orcidid>0000-0003-4210-7474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>John Chelliah, Cyril Robinson Azariah</creatorcontrib><creatorcontrib>Immanuel, Sheebha</creatorcontrib><creatorcontrib>Swaminathan, Rajesh</creatorcontrib><title>Investigation of pulsed laser deposited ZnO and TiO2 binary thin film nanostructures using electrochemical impedance spectroscopy</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The paper presents the preparation of nanostructured ZnO and TiO 2 binary thin films by pulsed laser deposition at different temperatures ranging from 298 K (as deposited) to 923 K. The films have been characterized by SEM, EDAX, XRD, and UV. The presence of nanospheres is detected by SEM. The XRD spectra extrapolates the film's amorphous existence below 773 K. Thin film deposited at 923 K confirmed ZnTiO 3 formation. The optical energy band gap measured by the Tauc plot was found to be 3.7–3.9 eV. The electrochemical impedance spectroscopy with a sweeping frequency of 1 Hz to 1 MHz was used to examine the films for temperatures between 298 K and 473 K. The EIS results revealed that these films have not denied an impedance and modulus relaxation. Activation energy dependent on impedance and module relaxation was calculated from the Arrhenius plot. The mean capacitance was obtained and statistically tested using the SPSS statistics software tool.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Energy bands</subject><subject>Energy gap</subject><subject>Materials Science</subject><subject>Nanospheres</subject><subject>Optical and Electronic Materials</subject><subject>Pulsed laser deposition</subject><subject>Pulsed lasers</subject><subject>Software</subject><subject>Software development tools</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><subject>Zinc oxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPAU8VydJ27RHWfxYWNjLCuIlpEm6m6Wb1iQVPPrPjVvBm6dhmPcx7yF0TeCWAPC7QKAq8gwoyaDgFc3gBM1IwVmWV_T1FM2gLniWF5Seo4sQ9gBQ5qyaoa-l-zAh2q2Mtne4b_EwdsFo3MlgPNZm6IONaX9zayydxhu7prixTvpPHHfW4dZ2B-yk60P0o4qjNwGPwbotNp1R0fdqZw5WyQ7bw2C0dMrgMBwvQfXD5yU6a2WyvPqdc_Ty-LBZPGer9dNycb_KFCN1zOqKGs2IyknDWpJTTkkBSmmleKWhaaVuGtDMtJDrRvEGTLryUktdMl42NZujm0l38P37mDKLfT96lywFLUhVlACUJxSdUCq9F7xpxeDtIYUVBMRP1WKqWqSqxbFqAYnEJlJIYLc1_k_6H9Y3z9mFhQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>John Chelliah, Cyril Robinson Azariah</creator><creator>Immanuel, Sheebha</creator><creator>Swaminathan, Rajesh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4210-7474</orcidid></search><sort><creationdate>20210401</creationdate><title>Investigation of pulsed laser deposited ZnO and TiO2 binary thin film nanostructures using electrochemical impedance spectroscopy</title><author>John Chelliah, Cyril Robinson Azariah ; Immanuel, Sheebha ; Swaminathan, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-982ed31c41b3f14272150ccdcc78d0bfadbb0d3ef04dbc7b0e0cc76dad6376b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Energy bands</topic><topic>Energy gap</topic><topic>Materials Science</topic><topic>Nanospheres</topic><topic>Optical and Electronic Materials</topic><topic>Pulsed laser deposition</topic><topic>Pulsed lasers</topic><topic>Software</topic><topic>Software development tools</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John Chelliah, Cyril Robinson Azariah</creatorcontrib><creatorcontrib>Immanuel, Sheebha</creatorcontrib><creatorcontrib>Swaminathan, Rajesh</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John Chelliah, Cyril Robinson Azariah</au><au>Immanuel, Sheebha</au><au>Swaminathan, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of pulsed laser deposited ZnO and TiO2 binary thin film nanostructures using electrochemical impedance spectroscopy</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>32</volume><issue>8</issue><spage>11173</spage><epage>11182</epage><pages>11173-11182</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The paper presents the preparation of nanostructured ZnO and TiO 2 binary thin films by pulsed laser deposition at different temperatures ranging from 298 K (as deposited) to 923 K. The films have been characterized by SEM, EDAX, XRD, and UV. The presence of nanospheres is detected by SEM. The XRD spectra extrapolates the film's amorphous existence below 773 K. Thin film deposited at 923 K confirmed ZnTiO 3 formation. The optical energy band gap measured by the Tauc plot was found to be 3.7–3.9 eV. The electrochemical impedance spectroscopy with a sweeping frequency of 1 Hz to 1 MHz was used to examine the films for temperatures between 298 K and 473 K. The EIS results revealed that these films have not denied an impedance and modulus relaxation. Activation energy dependent on impedance and module relaxation was calculated from the Arrhenius plot. The mean capacitance was obtained and statistically tested using the SPSS statistics software tool.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05782-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4210-7474</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-04, Vol.32 (8), p.11173-11182
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2518560027
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Electrochemical impedance spectroscopy
Energy bands
Energy gap
Materials Science
Nanospheres
Optical and Electronic Materials
Pulsed laser deposition
Pulsed lasers
Software
Software development tools
Spectrum analysis
Thin films
Titanium dioxide
Zinc oxide
title Investigation of pulsed laser deposited ZnO and TiO2 binary thin film nanostructures using electrochemical impedance spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20pulsed%20laser%20deposited%20ZnO%20and%20TiO2%20binary%20thin%20film%20nanostructures%20using%20electrochemical%20impedance%20spectroscopy&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=John%20Chelliah,%20Cyril%20Robinson%20Azariah&rft.date=2021-04-01&rft.volume=32&rft.issue=8&rft.spage=11173&rft.epage=11182&rft.pages=11173-11182&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05782-0&rft_dat=%3Cproquest_cross%3E2518560027%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-982ed31c41b3f14272150ccdcc78d0bfadbb0d3ef04dbc7b0e0cc76dad6376b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2518560027&rft_id=info:pmid/&rfr_iscdi=true