Loading…

Engineering the Activity and Stability of MOF‐Nanocomposites for Efficient Water Oxidation

Metal–organic frameworks (MOFs) are considered to be promising candidates for electrochemical water splitting. However, most MOFs are characterized by low electronic conductivity limiting their use as bulk materials for anodes and cathodes. Furthermore, the understanding of the critical parameters c...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2021-04, Vol.11 (16), p.n/a
Main Authors: Wang, Yuan, Liu, Borui, Shen, Xiangjian, Arandiyan, Hamidreza, Zhao, Tingwen, Li, Yibing, Garbrecht, Magnus, Su, Zhen, Han, Li, Tricoli, Antonio, Zhao, Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3949-ac47d6d638b0918249a5e03bd0c8df187423f21a676e8a52cb00321e8477626a3
cites cdi_FETCH-LOGICAL-c3949-ac47d6d638b0918249a5e03bd0c8df187423f21a676e8a52cb00321e8477626a3
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced energy materials
container_volume 11
creator Wang, Yuan
Liu, Borui
Shen, Xiangjian
Arandiyan, Hamidreza
Zhao, Tingwen
Li, Yibing
Garbrecht, Magnus
Su, Zhen
Han, Li
Tricoli, Antonio
Zhao, Chuan
description Metal–organic frameworks (MOFs) are considered to be promising candidates for electrochemical water splitting. However, most MOFs are characterized by low electronic conductivity limiting their use as bulk materials for anodes and cathodes. Furthermore, the understanding of the critical parameters controlling the activity and stability of MOF electrocatalysts is still insufficient. Herein, a systematic analysis is presented of the key structural parameters controlling the oxygen evolution reaction (OER) performance and stability of a representative family of bimetallic NiFe‐MOFs, where the role of the metal cations on the accessible active sites and intrinsic activity can be investigated independently from the crystal structure. The models and in‐depth structural and morphological characterizations reveal a hierarchy of properties affecting the OER activity with accessible sites and intrinsic activity playing a major role in the charge transfer efficiency. Optimization of these properties and addition of a conductive support substrate leads to efficient MOF‐nanocomposite electrocatalysts achieving a low overpotential of 258 mV at a current density of 10 mA cm−2 with a small Tafel slope of 49 mV dec−1 and excellent stability for more than 32 h of continuous OER in alkaline medium. A well‐dispersed bimetallic NiFe‐metal–organic framework (MOF) nanograin homogeneously grafted on graphene enhances electronic conductivity and provides a large amount of accessible active sites. In‐depth structural and morphological characterizations and models reveal a hierarchy of properties affecting the oxygen evolution reaction activity with accessible sites and intrinsic activity playing a major role in the charge transfer efficiency.
doi_str_mv 10.1002/aenm.202003759
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518659819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518659819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3949-ac47d6d638b0918249a5e03bd0c8df187423f21a676e8a52cb00321e8477626a3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWGq3rgOup-ZvMsmylFaF_ixU3AghM5OpKW1Sk1TtzkfwGX0Sp1Tq0ru598L57uEeAC4x6mOEyLU2bt0niCBEi1yegA7mmGVcMHR6nCk5B70Yl6gtJjGitAOeR25hnTHBugVMLwYOqmTfbNpB7Wp4n3RpV_vNN3A6H39_fs2085Vfb3y0yUTY-ABHTWMra1yCTzqZAOcfttbJencBzhq9iqb327vgcTx6GN5mk_nN3XAwySoqmcx0xYqa15yKEkksCJM6N4iWNapE3WBRMEIbgjUvuBE6J1XZfkmwEawoOOGadsHV4e4m-NetiUkt_Ta41lKRHAueS4Flq-ofVFXwMQbTqE2wax12CiO1D1HtQ1THEFtAHoB3uzK7f9RqMJpN_9gfPHd1_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518659819</pqid></control><display><type>article</type><title>Engineering the Activity and Stability of MOF‐Nanocomposites for Efficient Water Oxidation</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Wang, Yuan ; Liu, Borui ; Shen, Xiangjian ; Arandiyan, Hamidreza ; Zhao, Tingwen ; Li, Yibing ; Garbrecht, Magnus ; Su, Zhen ; Han, Li ; Tricoli, Antonio ; Zhao, Chuan</creator><creatorcontrib>Wang, Yuan ; Liu, Borui ; Shen, Xiangjian ; Arandiyan, Hamidreza ; Zhao, Tingwen ; Li, Yibing ; Garbrecht, Magnus ; Su, Zhen ; Han, Li ; Tricoli, Antonio ; Zhao, Chuan</creatorcontrib><description>Metal–organic frameworks (MOFs) are considered to be promising candidates for electrochemical water splitting. However, most MOFs are characterized by low electronic conductivity limiting their use as bulk materials for anodes and cathodes. Furthermore, the understanding of the critical parameters controlling the activity and stability of MOF electrocatalysts is still insufficient. Herein, a systematic analysis is presented of the key structural parameters controlling the oxygen evolution reaction (OER) performance and stability of a representative family of bimetallic NiFe‐MOFs, where the role of the metal cations on the accessible active sites and intrinsic activity can be investigated independently from the crystal structure. The models and in‐depth structural and morphological characterizations reveal a hierarchy of properties affecting the OER activity with accessible sites and intrinsic activity playing a major role in the charge transfer efficiency. Optimization of these properties and addition of a conductive support substrate leads to efficient MOF‐nanocomposite electrocatalysts achieving a low overpotential of 258 mV at a current density of 10 mA cm−2 with a small Tafel slope of 49 mV dec−1 and excellent stability for more than 32 h of continuous OER in alkaline medium. A well‐dispersed bimetallic NiFe‐metal–organic framework (MOF) nanograin homogeneously grafted on graphene enhances electronic conductivity and provides a large amount of accessible active sites. In‐depth structural and morphological characterizations and models reveal a hierarchy of properties affecting the oxygen evolution reaction activity with accessible sites and intrinsic activity playing a major role in the charge transfer efficiency.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202003759</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Accessibility ; Bimetals ; Charge efficiency ; Charge transfer ; Control stability ; Crystal structure ; Electrocatalysts ; graphene ; Iron compounds ; Metal-organic frameworks ; MOF grains ; Nanocomposites ; Nickel compounds ; Optimization ; Oxidation ; Oxygen evolution reactions ; Parameters ; Stability analysis ; Substrates ; ultrafine structure ; water oxidation ; Water splitting</subject><ispartof>Advanced energy materials, 2021-04, Vol.11 (16), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3949-ac47d6d638b0918249a5e03bd0c8df187423f21a676e8a52cb00321e8477626a3</citedby><cites>FETCH-LOGICAL-c3949-ac47d6d638b0918249a5e03bd0c8df187423f21a676e8a52cb00321e8477626a3</cites><orcidid>0000-0001-7007-5946 ; 0000-0002-5215-0487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Liu, Borui</creatorcontrib><creatorcontrib>Shen, Xiangjian</creatorcontrib><creatorcontrib>Arandiyan, Hamidreza</creatorcontrib><creatorcontrib>Zhao, Tingwen</creatorcontrib><creatorcontrib>Li, Yibing</creatorcontrib><creatorcontrib>Garbrecht, Magnus</creatorcontrib><creatorcontrib>Su, Zhen</creatorcontrib><creatorcontrib>Han, Li</creatorcontrib><creatorcontrib>Tricoli, Antonio</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><title>Engineering the Activity and Stability of MOF‐Nanocomposites for Efficient Water Oxidation</title><title>Advanced energy materials</title><description>Metal–organic frameworks (MOFs) are considered to be promising candidates for electrochemical water splitting. However, most MOFs are characterized by low electronic conductivity limiting their use as bulk materials for anodes and cathodes. Furthermore, the understanding of the critical parameters controlling the activity and stability of MOF electrocatalysts is still insufficient. Herein, a systematic analysis is presented of the key structural parameters controlling the oxygen evolution reaction (OER) performance and stability of a representative family of bimetallic NiFe‐MOFs, where the role of the metal cations on the accessible active sites and intrinsic activity can be investigated independently from the crystal structure. The models and in‐depth structural and morphological characterizations reveal a hierarchy of properties affecting the OER activity with accessible sites and intrinsic activity playing a major role in the charge transfer efficiency. Optimization of these properties and addition of a conductive support substrate leads to efficient MOF‐nanocomposite electrocatalysts achieving a low overpotential of 258 mV at a current density of 10 mA cm−2 with a small Tafel slope of 49 mV dec−1 and excellent stability for more than 32 h of continuous OER in alkaline medium. A well‐dispersed bimetallic NiFe‐metal–organic framework (MOF) nanograin homogeneously grafted on graphene enhances electronic conductivity and provides a large amount of accessible active sites. In‐depth structural and morphological characterizations and models reveal a hierarchy of properties affecting the oxygen evolution reaction activity with accessible sites and intrinsic activity playing a major role in the charge transfer efficiency.</description><subject>Accessibility</subject><subject>Bimetals</subject><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Control stability</subject><subject>Crystal structure</subject><subject>Electrocatalysts</subject><subject>graphene</subject><subject>Iron compounds</subject><subject>Metal-organic frameworks</subject><subject>MOF grains</subject><subject>Nanocomposites</subject><subject>Nickel compounds</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Parameters</subject><subject>Stability analysis</subject><subject>Substrates</subject><subject>ultrafine structure</subject><subject>water oxidation</subject><subject>Water splitting</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWGq3rgOup-ZvMsmylFaF_ixU3AghM5OpKW1Sk1TtzkfwGX0Sp1Tq0ru598L57uEeAC4x6mOEyLU2bt0niCBEi1yegA7mmGVcMHR6nCk5B70Yl6gtJjGitAOeR25hnTHBugVMLwYOqmTfbNpB7Wp4n3RpV_vNN3A6H39_fs2085Vfb3y0yUTY-ABHTWMra1yCTzqZAOcfttbJencBzhq9iqb327vgcTx6GN5mk_nN3XAwySoqmcx0xYqa15yKEkksCJM6N4iWNapE3WBRMEIbgjUvuBE6J1XZfkmwEawoOOGadsHV4e4m-NetiUkt_Ta41lKRHAueS4Flq-ofVFXwMQbTqE2wax12CiO1D1HtQ1THEFtAHoB3uzK7f9RqMJpN_9gfPHd1_w</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wang, Yuan</creator><creator>Liu, Borui</creator><creator>Shen, Xiangjian</creator><creator>Arandiyan, Hamidreza</creator><creator>Zhao, Tingwen</creator><creator>Li, Yibing</creator><creator>Garbrecht, Magnus</creator><creator>Su, Zhen</creator><creator>Han, Li</creator><creator>Tricoli, Antonio</creator><creator>Zhao, Chuan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7007-5946</orcidid><orcidid>https://orcid.org/0000-0002-5215-0487</orcidid></search><sort><creationdate>20210401</creationdate><title>Engineering the Activity and Stability of MOF‐Nanocomposites for Efficient Water Oxidation</title><author>Wang, Yuan ; Liu, Borui ; Shen, Xiangjian ; Arandiyan, Hamidreza ; Zhao, Tingwen ; Li, Yibing ; Garbrecht, Magnus ; Su, Zhen ; Han, Li ; Tricoli, Antonio ; Zhao, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3949-ac47d6d638b0918249a5e03bd0c8df187423f21a676e8a52cb00321e8477626a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accessibility</topic><topic>Bimetals</topic><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Control stability</topic><topic>Crystal structure</topic><topic>Electrocatalysts</topic><topic>graphene</topic><topic>Iron compounds</topic><topic>Metal-organic frameworks</topic><topic>MOF grains</topic><topic>Nanocomposites</topic><topic>Nickel compounds</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Parameters</topic><topic>Stability analysis</topic><topic>Substrates</topic><topic>ultrafine structure</topic><topic>water oxidation</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Liu, Borui</creatorcontrib><creatorcontrib>Shen, Xiangjian</creatorcontrib><creatorcontrib>Arandiyan, Hamidreza</creatorcontrib><creatorcontrib>Zhao, Tingwen</creatorcontrib><creatorcontrib>Li, Yibing</creatorcontrib><creatorcontrib>Garbrecht, Magnus</creatorcontrib><creatorcontrib>Su, Zhen</creatorcontrib><creatorcontrib>Han, Li</creatorcontrib><creatorcontrib>Tricoli, Antonio</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuan</au><au>Liu, Borui</au><au>Shen, Xiangjian</au><au>Arandiyan, Hamidreza</au><au>Zhao, Tingwen</au><au>Li, Yibing</au><au>Garbrecht, Magnus</au><au>Su, Zhen</au><au>Han, Li</au><au>Tricoli, Antonio</au><au>Zhao, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the Activity and Stability of MOF‐Nanocomposites for Efficient Water Oxidation</atitle><jtitle>Advanced energy materials</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>11</volume><issue>16</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Metal–organic frameworks (MOFs) are considered to be promising candidates for electrochemical water splitting. However, most MOFs are characterized by low electronic conductivity limiting their use as bulk materials for anodes and cathodes. Furthermore, the understanding of the critical parameters controlling the activity and stability of MOF electrocatalysts is still insufficient. Herein, a systematic analysis is presented of the key structural parameters controlling the oxygen evolution reaction (OER) performance and stability of a representative family of bimetallic NiFe‐MOFs, where the role of the metal cations on the accessible active sites and intrinsic activity can be investigated independently from the crystal structure. The models and in‐depth structural and morphological characterizations reveal a hierarchy of properties affecting the OER activity with accessible sites and intrinsic activity playing a major role in the charge transfer efficiency. Optimization of these properties and addition of a conductive support substrate leads to efficient MOF‐nanocomposite electrocatalysts achieving a low overpotential of 258 mV at a current density of 10 mA cm−2 with a small Tafel slope of 49 mV dec−1 and excellent stability for more than 32 h of continuous OER in alkaline medium. A well‐dispersed bimetallic NiFe‐metal–organic framework (MOF) nanograin homogeneously grafted on graphene enhances electronic conductivity and provides a large amount of accessible active sites. In‐depth structural and morphological characterizations and models reveal a hierarchy of properties affecting the oxygen evolution reaction activity with accessible sites and intrinsic activity playing a major role in the charge transfer efficiency.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202003759</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7007-5946</orcidid><orcidid>https://orcid.org/0000-0002-5215-0487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-04, Vol.11 (16), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2518659819
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Accessibility
Bimetals
Charge efficiency
Charge transfer
Control stability
Crystal structure
Electrocatalysts
graphene
Iron compounds
Metal-organic frameworks
MOF grains
Nanocomposites
Nickel compounds
Optimization
Oxidation
Oxygen evolution reactions
Parameters
Stability analysis
Substrates
ultrafine structure
water oxidation
Water splitting
title Engineering the Activity and Stability of MOF‐Nanocomposites for Efficient Water Oxidation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20Activity%20and%20Stability%20of%20MOF%E2%80%90Nanocomposites%20for%20Efficient%20Water%20Oxidation&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Yuan&rft.date=2021-04-01&rft.volume=11&rft.issue=16&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202003759&rft_dat=%3Cproquest_cross%3E2518659819%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3949-ac47d6d638b0918249a5e03bd0c8df187423f21a676e8a52cb00321e8477626a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2518659819&rft_id=info:pmid/&rfr_iscdi=true