Loading…

A novel fusion approach in the extraction of kernel descriptor with improved effectiveness and efficiency

Image representation using feature descriptors is crucial. A number of histogram-based descriptors are widely used for this purpose. However, histogram-based descriptors have certain limitations and kernel descriptors (KDES) are proven to overcome them. Moreover, the combination of more than one KDE...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2021-04, Vol.80 (10), p.14545-14564
Main Authors: Karmakar, Priyabrata, Teng, Shyh Wei, Lu, Guojun, Zhang, Dengsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-e45f4f9fe3943bef57a1445350b29d3cb21e0dc56e6ab17b5f903a2748a717053
cites cdi_FETCH-LOGICAL-c363t-e45f4f9fe3943bef57a1445350b29d3cb21e0dc56e6ab17b5f903a2748a717053
container_end_page 14564
container_issue 10
container_start_page 14545
container_title Multimedia tools and applications
container_volume 80
creator Karmakar, Priyabrata
Teng, Shyh Wei
Lu, Guojun
Zhang, Dengsheng
description Image representation using feature descriptors is crucial. A number of histogram-based descriptors are widely used for this purpose. However, histogram-based descriptors have certain limitations and kernel descriptors (KDES) are proven to overcome them. Moreover, the combination of more than one KDES performs better than an individual KDES. Conventionally, KDES fusion is performed by concatenating them after the gradient, colour and shape descriptors have been extracted. This approach has limitations in regard to the efficiency as well as the effectiveness. In this paper, we propose a novel approach to fuse different image features before the descriptor extraction, resulting in a compact descriptor which is efficient and effective. In addition, we have investigated the effect on the proposed descriptor when texture-based features are fused along with the conventionally used features. Our proposed descriptor is examined on two publicly available image databases and shown to provide outstanding performances.
doi_str_mv 10.1007/s11042-020-10300-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518857692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518857692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e45f4f9fe3943bef57a1445350b29d3cb21e0dc56e6ab17b5f903a2748a717053</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEmPwBzhF4lxwkqZpj9PElzSJC5yjNHVYxpaWpBvs35OtSNy42Jb9vLb1Ztk1hVsKIO8ipVCwHBjkFDikeJJNqJA8l5LR01TzCnIpgJ5nFzGuAGgpWDHJ3Iz4bodrYrfRdZ7ovg-dNkviPBmWSPB7CNoMh1FnyQcGn9gWowmuH7pAvtyQ2E0S7bAlaC0meIceYyTaHzvOOPRmf5mdWb2OePWbp9nbw_3r_ClfvDw-z2eL3PCSDzkWwha2tsjrgjdohdS0KAQX0LC65aZhFKE1osRSN1Q2wtbANZNFpSWVIPg0uxn3pp8-txgHteq2waeTiglaVUKWNUsUGykTuhgDWtUHt9Fhryiog6VqtFQlS9XRUkWTiI-imGD_juFv9T-qHwByekg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518857692</pqid></control><display><type>article</type><title>A novel fusion approach in the extraction of kernel descriptor with improved effectiveness and efficiency</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Karmakar, Priyabrata ; Teng, Shyh Wei ; Lu, Guojun ; Zhang, Dengsheng</creator><creatorcontrib>Karmakar, Priyabrata ; Teng, Shyh Wei ; Lu, Guojun ; Zhang, Dengsheng</creatorcontrib><description>Image representation using feature descriptors is crucial. A number of histogram-based descriptors are widely used for this purpose. However, histogram-based descriptors have certain limitations and kernel descriptors (KDES) are proven to overcome them. Moreover, the combination of more than one KDES performs better than an individual KDES. Conventionally, KDES fusion is performed by concatenating them after the gradient, colour and shape descriptors have been extracted. This approach has limitations in regard to the efficiency as well as the effectiveness. In this paper, we propose a novel approach to fuse different image features before the descriptor extraction, resulting in a compact descriptor which is efficient and effective. In addition, we have investigated the effect on the proposed descriptor when texture-based features are fused along with the conventionally used features. Our proposed descriptor is examined on two publicly available image databases and shown to provide outstanding performances.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-10300-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Efficiency ; Feature extraction ; Histograms ; Image retrieval ; Kernels ; Multimedia ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2021-04, Vol.80 (10), p.14545-14564</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e45f4f9fe3943bef57a1445350b29d3cb21e0dc56e6ab17b5f903a2748a717053</citedby><cites>FETCH-LOGICAL-c363t-e45f4f9fe3943bef57a1445350b29d3cb21e0dc56e6ab17b5f903a2748a717053</cites><orcidid>0000-0001-8015-1375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2518857692/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2518857692?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Karmakar, Priyabrata</creatorcontrib><creatorcontrib>Teng, Shyh Wei</creatorcontrib><creatorcontrib>Lu, Guojun</creatorcontrib><creatorcontrib>Zhang, Dengsheng</creatorcontrib><title>A novel fusion approach in the extraction of kernel descriptor with improved effectiveness and efficiency</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Image representation using feature descriptors is crucial. A number of histogram-based descriptors are widely used for this purpose. However, histogram-based descriptors have certain limitations and kernel descriptors (KDES) are proven to overcome them. Moreover, the combination of more than one KDES performs better than an individual KDES. Conventionally, KDES fusion is performed by concatenating them after the gradient, colour and shape descriptors have been extracted. This approach has limitations in regard to the efficiency as well as the effectiveness. In this paper, we propose a novel approach to fuse different image features before the descriptor extraction, resulting in a compact descriptor which is efficient and effective. In addition, we have investigated the effect on the proposed descriptor when texture-based features are fused along with the conventionally used features. Our proposed descriptor is examined on two publicly available image databases and shown to provide outstanding performances.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image retrieval</subject><subject>Kernels</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE1PwzAMhisEEmPwBzhF4lxwkqZpj9PElzSJC5yjNHVYxpaWpBvs35OtSNy42Jb9vLb1Ztk1hVsKIO8ipVCwHBjkFDikeJJNqJA8l5LR01TzCnIpgJ5nFzGuAGgpWDHJ3Iz4bodrYrfRdZ7ovg-dNkviPBmWSPB7CNoMh1FnyQcGn9gWowmuH7pAvtyQ2E0S7bAlaC0meIceYyTaHzvOOPRmf5mdWb2OePWbp9nbw_3r_ClfvDw-z2eL3PCSDzkWwha2tsjrgjdohdS0KAQX0LC65aZhFKE1osRSN1Q2wtbANZNFpSWVIPg0uxn3pp8-txgHteq2waeTiglaVUKWNUsUGykTuhgDWtUHt9Fhryiog6VqtFQlS9XRUkWTiI-imGD_juFv9T-qHwByekg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Karmakar, Priyabrata</creator><creator>Teng, Shyh Wei</creator><creator>Lu, Guojun</creator><creator>Zhang, Dengsheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8015-1375</orcidid></search><sort><creationdate>20210401</creationdate><title>A novel fusion approach in the extraction of kernel descriptor with improved effectiveness and efficiency</title><author>Karmakar, Priyabrata ; Teng, Shyh Wei ; Lu, Guojun ; Zhang, Dengsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e45f4f9fe3943bef57a1445350b29d3cb21e0dc56e6ab17b5f903a2748a717053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image retrieval</topic><topic>Kernels</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karmakar, Priyabrata</creatorcontrib><creatorcontrib>Teng, Shyh Wei</creatorcontrib><creatorcontrib>Lu, Guojun</creatorcontrib><creatorcontrib>Zhang, Dengsheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karmakar, Priyabrata</au><au>Teng, Shyh Wei</au><au>Lu, Guojun</au><au>Zhang, Dengsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel fusion approach in the extraction of kernel descriptor with improved effectiveness and efficiency</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>80</volume><issue>10</issue><spage>14545</spage><epage>14564</epage><pages>14545-14564</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Image representation using feature descriptors is crucial. A number of histogram-based descriptors are widely used for this purpose. However, histogram-based descriptors have certain limitations and kernel descriptors (KDES) are proven to overcome them. Moreover, the combination of more than one KDES performs better than an individual KDES. Conventionally, KDES fusion is performed by concatenating them after the gradient, colour and shape descriptors have been extracted. This approach has limitations in regard to the efficiency as well as the effectiveness. In this paper, we propose a novel approach to fuse different image features before the descriptor extraction, resulting in a compact descriptor which is efficient and effective. In addition, we have investigated the effect on the proposed descriptor when texture-based features are fused along with the conventionally used features. Our proposed descriptor is examined on two publicly available image databases and shown to provide outstanding performances.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-10300-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8015-1375</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2021-04, Vol.80 (10), p.14545-14564
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2518857692
source ABI/INFORM global; Springer Link
subjects Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Efficiency
Feature extraction
Histograms
Image retrieval
Kernels
Multimedia
Multimedia Information Systems
Special Purpose and Application-Based Systems
title A novel fusion approach in the extraction of kernel descriptor with improved effectiveness and efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20fusion%20approach%20in%20the%20extraction%20of%20kernel%20descriptor%20with%20improved%20effectiveness%20and%20efficiency&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Karmakar,%20Priyabrata&rft.date=2021-04-01&rft.volume=80&rft.issue=10&rft.spage=14545&rft.epage=14564&rft.pages=14545-14564&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-10300-1&rft_dat=%3Cproquest_cross%3E2518857692%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-e45f4f9fe3943bef57a1445350b29d3cb21e0dc56e6ab17b5f903a2748a717053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2518857692&rft_id=info:pmid/&rfr_iscdi=true