Loading…
An open-source Bayesian atmospheric radiative transfer (BART) code: III. Initialization, atmospheric profile generator, post-processing routines, and application to exoplanet WASP-43b
This and companion papers by Harrington et al. 2021, submitted and Cubillos et al. 2021, submitted describe an open-source retrieval framework, Bayesian Atmospheric Radiative Transfer (BART), available to the community under the reproducible-research license via https://github.com/exosports/BART . B...
Saved in:
Published in: | arXiv.org 2021-04 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This and companion papers by Harrington et al. 2021, submitted and Cubillos et al. 2021, submitted describe an open-source retrieval framework, Bayesian Atmospheric Radiative Transfer (BART), available to the community under the reproducible-research license via https://github.com/exosports/BART . BART is a radiative-transfer code (transit, https://github.com/exosports/transit , Rojo 2009, 2009ASPC..420..321R), initialized by the Thermochemical Equilibrium Abundances (TEA, https://github.com/dzesmin/TEA , Blecic et al. 2016, arXiv:1505.06392) code, and driven through the parameter phase space by a differential-evolution Markov-chain Monte Carlo (MC3, https://github.com/pcubillos/mc3 , Cubillos et al. 2017, arXiv:1610.01336) sampler. In this paper we give a brief description of the framework, and its modules that can be used separately for other scientific purposes; outline the retrieval analysis flow; present the initialization routines, describing in detail the atmospheric profile generator and the temperature and species parameterizations; and specify the post-processing routines and outputs, concentrating on the spectrum band integrator, the best-fit model selection, and the contribution functions. We also present an atmospheric analysis of WASP-43b secondary eclipse data obtained from space- and ground-based observations. We compare our results with the results from the literature, and investigate how the inclusion of additional opacity sources influence the best-fit model. |
---|---|
ISSN: | 2331-8422 |