Loading…

Numerical Investigation of High-Strength Steel and Ultrahigh-Performance Concrete for Ductile Rectangular Hollow Columns

AbstractUltrahigh-performance concrete (UHPC) has the potential to address seismic performance issues reported for rectangular hollow columns. However, an impediment to the use of UHPC is its limited flexural ductility compared with normal concrete (NC) with the same confinement. This study investig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of structural engineering (New York, N.Y.) N.Y.), 2021-07, Vol.147 (7)
Main Authors: Yang, Cancan, Okumus, Pinar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:AbstractUltrahigh-performance concrete (UHPC) has the potential to address seismic performance issues reported for rectangular hollow columns. However, an impediment to the use of UHPC is its limited flexural ductility compared with normal concrete (NC) with the same confinement. This study investigated UHPC rectangular, hollow cross-section bridge columns with HSS as a confinement alternative using flexure (moment-curvature), flexure-shear and finite-element analyses. The flexural analytical model, validated by tests in the literature, was used to perform parametric studies to assess the impact of HSS on column flexural ductility. Analysis results showed that HSS confinement can improve the flexural ductility of UHPC, making UHPC suitable for hollow columns. The flexure-shear interaction model considered the shear strength degradation with increasing displacements to estimate the failure mode. UHPC columns outperformed NC columns in delaying shear-controlled failure. Finite-element analysis was performed on columns with selected design parameters to understand the impact of UHPC on shear damage control. The ratio of flexure to shear displacements was higher in UHPC columns compared with NC columns due to UHPC’s higher shear resistance.
ISSN:0733-9445
1943-541X
DOI:10.1061/(ASCE)ST.1943-541X.0003045