Loading…

Fast matrix algebra for Bayesian model calibration

In Bayesian model calibration, evaluation of the likelihood function usually involves finding the inverse and determinant of a covariance matrix. When Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior, hundreds of thousands of likelihood evaluations may be required. In th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical computation and simulation 2021-05, Vol.91 (7), p.1331-1341
Main Authors: Rumsey, Kellin N., Huerta, Gabriel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833
cites cdi_FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833
container_end_page 1341
container_issue 7
container_start_page 1331
container_title Journal of statistical computation and simulation
container_volume 91
creator Rumsey, Kellin N.
Huerta, Gabriel
description In Bayesian model calibration, evaluation of the likelihood function usually involves finding the inverse and determinant of a covariance matrix. When Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior, hundreds of thousands of likelihood evaluations may be required. In this paper, we demonstrate that the structure of the covariance matrix can be exploited, leading to substantial time savings in practice. We also derive two simple equations for approximating the inverse of the covariance matrix in this setting, which can be computed in near-quadratic time. The practical implications of these strategies are demonstrated using a simple numerical case study and the "quack" R package. For a covariance matrix with 1000 rows, application of these strategies for a million likelihood evaluations leads to a speedup of roughly 4000 compared to the naive implementation
doi_str_mv 10.1080/00949655.2020.1850729
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519159153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519159153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833</originalsourceid><addsrcrecordid>eNp9UFFLwzAQDqLgnP4EoeBz5yVp0vRNHW4KA1_0OdzSVDLaZiYdun9vSuercHBw933fffcRckthQUHBPUBVVFKIBQOWRkpAyaozMqNC8lxQyc_JbMTkI-iSXMW4AwBKBZsRtsI4ZB0Owf1k2H7abcCs8SF7wqONDvus87VtM4OtS6vB-f6aXDTYRntz6nPysXp-X77km7f16_JxkxuuxJBzK2sjGcctNaxoJFXIbQlcytImY6aoVSksA1RbUVOWTNdNxUTBAUvFFedzcjfp7oP_Otg46J0_hD6d1EzQiopUI0pMKBN8jME2eh9ch-GoKegxHv0Xjx7j0ad4Eu9h4rk-vdvhtw9trQc8tj40AXvjoub_S_wCJ3hphA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519159153</pqid></control><display><type>article</type><title>Fast matrix algebra for Bayesian model calibration</title><source>Taylor and Francis Science and Technology Collection</source><creator>Rumsey, Kellin N. ; Huerta, Gabriel</creator><creatorcontrib>Rumsey, Kellin N. ; Huerta, Gabriel</creatorcontrib><description>In Bayesian model calibration, evaluation of the likelihood function usually involves finding the inverse and determinant of a covariance matrix. When Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior, hundreds of thousands of likelihood evaluations may be required. In this paper, we demonstrate that the structure of the covariance matrix can be exploited, leading to substantial time savings in practice. We also derive two simple equations for approximating the inverse of the covariance matrix in this setting, which can be computed in near-quadratic time. The practical implications of these strategies are demonstrated using a simple numerical case study and the "quack" R package. For a covariance matrix with 1000 rows, application of these strategies for a million likelihood evaluations leads to a speedup of roughly 4000 compared to the naive implementation</description><identifier>ISSN: 0094-9655</identifier><identifier>EISSN: 1563-5163</identifier><identifier>DOI: 10.1080/00949655.2020.1850729</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>41-04 ; 62-04 ; Bayesian analysis ; Bayesian model calibration ; Calibration ; Covariance matrix ; determinant ; fast ; inverse ; likelihood ; Markov chains ; Mathematical analysis ; Matrix algebra ; Monte Carlo simulation</subject><ispartof>Journal of statistical computation and simulation, 2021-05, Vol.91 (7), p.1331-1341</ispartof><rights>This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. 2020</rights><rights>This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law.. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833</citedby><cites>FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833</cites><orcidid>0000-0002-2989-965X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rumsey, Kellin N.</creatorcontrib><creatorcontrib>Huerta, Gabriel</creatorcontrib><title>Fast matrix algebra for Bayesian model calibration</title><title>Journal of statistical computation and simulation</title><description>In Bayesian model calibration, evaluation of the likelihood function usually involves finding the inverse and determinant of a covariance matrix. When Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior, hundreds of thousands of likelihood evaluations may be required. In this paper, we demonstrate that the structure of the covariance matrix can be exploited, leading to substantial time savings in practice. We also derive two simple equations for approximating the inverse of the covariance matrix in this setting, which can be computed in near-quadratic time. The practical implications of these strategies are demonstrated using a simple numerical case study and the "quack" R package. For a covariance matrix with 1000 rows, application of these strategies for a million likelihood evaluations leads to a speedup of roughly 4000 compared to the naive implementation</description><subject>41-04</subject><subject>62-04</subject><subject>Bayesian analysis</subject><subject>Bayesian model calibration</subject><subject>Calibration</subject><subject>Covariance matrix</subject><subject>determinant</subject><subject>fast</subject><subject>inverse</subject><subject>likelihood</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Monte Carlo simulation</subject><issn>0094-9655</issn><issn>1563-5163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UFFLwzAQDqLgnP4EoeBz5yVp0vRNHW4KA1_0OdzSVDLaZiYdun9vSuercHBw933fffcRckthQUHBPUBVVFKIBQOWRkpAyaozMqNC8lxQyc_JbMTkI-iSXMW4AwBKBZsRtsI4ZB0Owf1k2H7abcCs8SF7wqONDvus87VtM4OtS6vB-f6aXDTYRntz6nPysXp-X77km7f16_JxkxuuxJBzK2sjGcctNaxoJFXIbQlcytImY6aoVSksA1RbUVOWTNdNxUTBAUvFFedzcjfp7oP_Otg46J0_hD6d1EzQiopUI0pMKBN8jME2eh9ch-GoKegxHv0Xjx7j0ad4Eu9h4rk-vdvhtw9trQc8tj40AXvjoub_S_wCJ3hphA</recordid><startdate>20210503</startdate><enddate>20210503</enddate><creator>Rumsey, Kellin N.</creator><creator>Huerta, Gabriel</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2989-965X</orcidid></search><sort><creationdate>20210503</creationdate><title>Fast matrix algebra for Bayesian model calibration</title><author>Rumsey, Kellin N. ; Huerta, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>41-04</topic><topic>62-04</topic><topic>Bayesian analysis</topic><topic>Bayesian model calibration</topic><topic>Calibration</topic><topic>Covariance matrix</topic><topic>determinant</topic><topic>fast</topic><topic>inverse</topic><topic>likelihood</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Monte Carlo simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rumsey, Kellin N.</creatorcontrib><creatorcontrib>Huerta, Gabriel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of statistical computation and simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rumsey, Kellin N.</au><au>Huerta, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast matrix algebra for Bayesian model calibration</atitle><jtitle>Journal of statistical computation and simulation</jtitle><date>2021-05-03</date><risdate>2021</risdate><volume>91</volume><issue>7</issue><spage>1331</spage><epage>1341</epage><pages>1331-1341</pages><issn>0094-9655</issn><eissn>1563-5163</eissn><abstract>In Bayesian model calibration, evaluation of the likelihood function usually involves finding the inverse and determinant of a covariance matrix. When Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior, hundreds of thousands of likelihood evaluations may be required. In this paper, we demonstrate that the structure of the covariance matrix can be exploited, leading to substantial time savings in practice. We also derive two simple equations for approximating the inverse of the covariance matrix in this setting, which can be computed in near-quadratic time. The practical implications of these strategies are demonstrated using a simple numerical case study and the "quack" R package. For a covariance matrix with 1000 rows, application of these strategies for a million likelihood evaluations leads to a speedup of roughly 4000 compared to the naive implementation</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00949655.2020.1850729</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2989-965X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-9655
ispartof Journal of statistical computation and simulation, 2021-05, Vol.91 (7), p.1331-1341
issn 0094-9655
1563-5163
language eng
recordid cdi_proquest_journals_2519159153
source Taylor and Francis Science and Technology Collection
subjects 41-04
62-04
Bayesian analysis
Bayesian model calibration
Calibration
Covariance matrix
determinant
fast
inverse
likelihood
Markov chains
Mathematical analysis
Matrix algebra
Monte Carlo simulation
title Fast matrix algebra for Bayesian model calibration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20matrix%20algebra%20for%20Bayesian%20model%20calibration&rft.jtitle=Journal%20of%20statistical%20computation%20and%20simulation&rft.au=Rumsey,%20Kellin%20N.&rft.date=2021-05-03&rft.volume=91&rft.issue=7&rft.spage=1331&rft.epage=1341&rft.pages=1331-1341&rft.issn=0094-9655&rft.eissn=1563-5163&rft_id=info:doi/10.1080/00949655.2020.1850729&rft_dat=%3Cproquest_cross%3E2519159153%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2519159153&rft_id=info:pmid/&rfr_iscdi=true