Loading…
Fast matrix algebra for Bayesian model calibration
In Bayesian model calibration, evaluation of the likelihood function usually involves finding the inverse and determinant of a covariance matrix. When Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior, hundreds of thousands of likelihood evaluations may be required. In th...
Saved in:
Published in: | Journal of statistical computation and simulation 2021-05, Vol.91 (7), p.1331-1341 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833 |
container_end_page | 1341 |
container_issue | 7 |
container_start_page | 1331 |
container_title | Journal of statistical computation and simulation |
container_volume | 91 |
creator | Rumsey, Kellin N. Huerta, Gabriel |
description | In Bayesian model calibration, evaluation of the likelihood function usually involves finding the inverse and determinant of a covariance matrix. When Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior, hundreds of thousands of likelihood evaluations may be required. In this paper, we demonstrate that the structure of the covariance matrix can be exploited, leading to substantial time savings in practice. We also derive two simple equations for approximating the inverse of the covariance matrix in this setting, which can be computed in near-quadratic time. The practical implications of these strategies are demonstrated using a simple numerical case study and the
"quack"
R
package. For a covariance matrix with 1000 rows, application of these strategies for a million likelihood evaluations leads to a speedup of roughly 4000 compared to the naive implementation |
doi_str_mv | 10.1080/00949655.2020.1850729 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519159153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519159153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833</originalsourceid><addsrcrecordid>eNp9UFFLwzAQDqLgnP4EoeBz5yVp0vRNHW4KA1_0OdzSVDLaZiYdun9vSuercHBw933fffcRckthQUHBPUBVVFKIBQOWRkpAyaozMqNC8lxQyc_JbMTkI-iSXMW4AwBKBZsRtsI4ZB0Owf1k2H7abcCs8SF7wqONDvus87VtM4OtS6vB-f6aXDTYRntz6nPysXp-X77km7f16_JxkxuuxJBzK2sjGcctNaxoJFXIbQlcytImY6aoVSksA1RbUVOWTNdNxUTBAUvFFedzcjfp7oP_Otg46J0_hD6d1EzQiopUI0pMKBN8jME2eh9ch-GoKegxHv0Xjx7j0ad4Eu9h4rk-vdvhtw9trQc8tj40AXvjoub_S_wCJ3hphA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519159153</pqid></control><display><type>article</type><title>Fast matrix algebra for Bayesian model calibration</title><source>Taylor and Francis Science and Technology Collection</source><creator>Rumsey, Kellin N. ; Huerta, Gabriel</creator><creatorcontrib>Rumsey, Kellin N. ; Huerta, Gabriel</creatorcontrib><description>In Bayesian model calibration, evaluation of the likelihood function usually involves finding the inverse and determinant of a covariance matrix. When Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior, hundreds of thousands of likelihood evaluations may be required. In this paper, we demonstrate that the structure of the covariance matrix can be exploited, leading to substantial time savings in practice. We also derive two simple equations for approximating the inverse of the covariance matrix in this setting, which can be computed in near-quadratic time. The practical implications of these strategies are demonstrated using a simple numerical case study and the
"quack"
R
package. For a covariance matrix with 1000 rows, application of these strategies for a million likelihood evaluations leads to a speedup of roughly 4000 compared to the naive implementation</description><identifier>ISSN: 0094-9655</identifier><identifier>EISSN: 1563-5163</identifier><identifier>DOI: 10.1080/00949655.2020.1850729</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>41-04 ; 62-04 ; Bayesian analysis ; Bayesian model calibration ; Calibration ; Covariance matrix ; determinant ; fast ; inverse ; likelihood ; Markov chains ; Mathematical analysis ; Matrix algebra ; Monte Carlo simulation</subject><ispartof>Journal of statistical computation and simulation, 2021-05, Vol.91 (7), p.1331-1341</ispartof><rights>This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. 2020</rights><rights>This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law.. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833</citedby><cites>FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833</cites><orcidid>0000-0002-2989-965X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rumsey, Kellin N.</creatorcontrib><creatorcontrib>Huerta, Gabriel</creatorcontrib><title>Fast matrix algebra for Bayesian model calibration</title><title>Journal of statistical computation and simulation</title><description>In Bayesian model calibration, evaluation of the likelihood function usually involves finding the inverse and determinant of a covariance matrix. When Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior, hundreds of thousands of likelihood evaluations may be required. In this paper, we demonstrate that the structure of the covariance matrix can be exploited, leading to substantial time savings in practice. We also derive two simple equations for approximating the inverse of the covariance matrix in this setting, which can be computed in near-quadratic time. The practical implications of these strategies are demonstrated using a simple numerical case study and the
"quack"
R
package. For a covariance matrix with 1000 rows, application of these strategies for a million likelihood evaluations leads to a speedup of roughly 4000 compared to the naive implementation</description><subject>41-04</subject><subject>62-04</subject><subject>Bayesian analysis</subject><subject>Bayesian model calibration</subject><subject>Calibration</subject><subject>Covariance matrix</subject><subject>determinant</subject><subject>fast</subject><subject>inverse</subject><subject>likelihood</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Monte Carlo simulation</subject><issn>0094-9655</issn><issn>1563-5163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UFFLwzAQDqLgnP4EoeBz5yVp0vRNHW4KA1_0OdzSVDLaZiYdun9vSuercHBw933fffcRckthQUHBPUBVVFKIBQOWRkpAyaozMqNC8lxQyc_JbMTkI-iSXMW4AwBKBZsRtsI4ZB0Owf1k2H7abcCs8SF7wqONDvus87VtM4OtS6vB-f6aXDTYRntz6nPysXp-X77km7f16_JxkxuuxJBzK2sjGcctNaxoJFXIbQlcytImY6aoVSksA1RbUVOWTNdNxUTBAUvFFedzcjfp7oP_Otg46J0_hD6d1EzQiopUI0pMKBN8jME2eh9ch-GoKegxHv0Xjx7j0ad4Eu9h4rk-vdvhtw9trQc8tj40AXvjoub_S_wCJ3hphA</recordid><startdate>20210503</startdate><enddate>20210503</enddate><creator>Rumsey, Kellin N.</creator><creator>Huerta, Gabriel</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2989-965X</orcidid></search><sort><creationdate>20210503</creationdate><title>Fast matrix algebra for Bayesian model calibration</title><author>Rumsey, Kellin N. ; Huerta, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>41-04</topic><topic>62-04</topic><topic>Bayesian analysis</topic><topic>Bayesian model calibration</topic><topic>Calibration</topic><topic>Covariance matrix</topic><topic>determinant</topic><topic>fast</topic><topic>inverse</topic><topic>likelihood</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Monte Carlo simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rumsey, Kellin N.</creatorcontrib><creatorcontrib>Huerta, Gabriel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of statistical computation and simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rumsey, Kellin N.</au><au>Huerta, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast matrix algebra for Bayesian model calibration</atitle><jtitle>Journal of statistical computation and simulation</jtitle><date>2021-05-03</date><risdate>2021</risdate><volume>91</volume><issue>7</issue><spage>1331</spage><epage>1341</epage><pages>1331-1341</pages><issn>0094-9655</issn><eissn>1563-5163</eissn><abstract>In Bayesian model calibration, evaluation of the likelihood function usually involves finding the inverse and determinant of a covariance matrix. When Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior, hundreds of thousands of likelihood evaluations may be required. In this paper, we demonstrate that the structure of the covariance matrix can be exploited, leading to substantial time savings in practice. We also derive two simple equations for approximating the inverse of the covariance matrix in this setting, which can be computed in near-quadratic time. The practical implications of these strategies are demonstrated using a simple numerical case study and the
"quack"
R
package. For a covariance matrix with 1000 rows, application of these strategies for a million likelihood evaluations leads to a speedup of roughly 4000 compared to the naive implementation</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00949655.2020.1850729</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2989-965X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-9655 |
ispartof | Journal of statistical computation and simulation, 2021-05, Vol.91 (7), p.1331-1341 |
issn | 0094-9655 1563-5163 |
language | eng |
recordid | cdi_proquest_journals_2519159153 |
source | Taylor and Francis Science and Technology Collection |
subjects | 41-04 62-04 Bayesian analysis Bayesian model calibration Calibration Covariance matrix determinant fast inverse likelihood Markov chains Mathematical analysis Matrix algebra Monte Carlo simulation |
title | Fast matrix algebra for Bayesian model calibration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20matrix%20algebra%20for%20Bayesian%20model%20calibration&rft.jtitle=Journal%20of%20statistical%20computation%20and%20simulation&rft.au=Rumsey,%20Kellin%20N.&rft.date=2021-05-03&rft.volume=91&rft.issue=7&rft.spage=1331&rft.epage=1341&rft.pages=1331-1341&rft.issn=0094-9655&rft.eissn=1563-5163&rft_id=info:doi/10.1080/00949655.2020.1850729&rft_dat=%3Cproquest_cross%3E2519159153%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-3e6dc623ab1c24f618a3e703667e563c4d875e20a8b5d12507df925430a783833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2519159153&rft_id=info:pmid/&rfr_iscdi=true |