Loading…

Aluminium trihydrate-filled poly(methyl methacrylate) (PMMA/ATH) waste powder utilization in wood-plastic composite boards bonded by MUF resin

An alternative approach to producing a wood-plastic composite (WPC) from wood particles, aluminium trihydrate-filled poly(methyl methacrylate) (PMMA/ATH) waste powder, and melamine-urea-formaldehyde (MUF) resin is described. The surface of PMMA/ATH powder was modified with ureido- and amino-function...

Full description

Saved in:
Bibliographic Details
Published in:Bioresources 2020-05, Vol.15 (2), p.3252-3269
Main Authors: Vovk, Matej, Šernek, Milan
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An alternative approach to producing a wood-plastic composite (WPC) from wood particles, aluminium trihydrate-filled poly(methyl methacrylate) (PMMA/ATH) waste powder, and melamine-urea-formaldehyde (MUF) resin is described. The surface of PMMA/ATH powder was modified with ureido- and amino-functional silane coupling agents at four different degrees of modification: 0.3%, 0.5%, 1.0%, and 2.0%. An X-ray photoelectron spectroscopy (XPS) analysis was executed on a silane-modified PMMA/ATH material, and the results revealed the presence of chemically bonded silanes on the PMMA/ATH surface. Contact angle measurements were also performed to calculate the surface free energies of the modified powders. Water contact angles of modified powders slightly decreased as surface free energy increased with the degree of surface modification. Mechanical tests of the composites showed that different degrees of surface modification had a significant influence on modulus of elasticity (MOE) and modulus of rupture (MOR) of the composite boards. However, there were no significant differences between the silanes used.
ISSN:1930-2126
1930-2126
DOI:10.15376/biores.15.2.3252-3269