Loading…
A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices
An always-on video-based human action recognition (HAR) system on chip (SoC) integrated with a CMOS image sensor (CIS) is proposed for the Internet of Things (IoT) devices. The proposed SoC is the first always-on integrated circuit (IC) performing the full process of HAR in a single chip. To resolve...
Saved in:
Published in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-05, Vol.68 (5), p.1700-1704 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-d0fc7430e4c67ba38b66655b5b35139e24a031f60dde4769d676ff2ea834d89e3 |
container_end_page | 1704 |
container_issue | 5 |
container_start_page | 1700 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 68 |
creator | Ryu, Junha Park, Gwangtae Im, Dongseok Kim, Ji-Hoon Yoo, Hoi-Jun |
description | An always-on video-based human action recognition (HAR) system on chip (SoC) integrated with a CMOS image sensor (CIS) is proposed for the Internet of Things (IoT) devices. The proposed SoC is the first always-on integrated circuit (IC) performing the full process of HAR in a single chip. To resolve large power consumption from vision sensor and compute-intensive DNN operation, the proposed SoC operates in two different modes; 1) in adaptive frame resolution based human action recognition (AFR-HAR) mode, CIS resolution prediction algorithm and self-adjustable CIS reduce 42.9-91.8% of readout power by adaptively adjusting frame resolution. 2) In motion event detection (MED) mode, the motion event detection unit (MEDU) skips unnecessary imaging and DNN computation by monitoring motion events and leads to over 99% power saving. The proposed HAR SoC is simulated in 65-nm CMOS technology and occupies 8.56 mm 2 . It consumes only 0.82 {\mu }\text{W} when no motion is detected and 0.31-8.52 mW for evaluating human actions on the ActivityNet dataset. |
doi_str_mv | 10.1109/TCSII.2021.3067151 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519965524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9381516</ieee_id><sourcerecordid>2519965524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-d0fc7430e4c67ba38b66655b5b35139e24a031f60dde4769d676ff2ea834d89e3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EEqVwAdhYYp3gv9jxMgQKkSoh0aIuLSeZQEpaQ5yAejfOwJlIf8Rq3mjeeyN9CF1SElJK9M08nWVZyAijISdS0YgeoRGNojjgStPjrRY6UEqoU3Tm_ZIQpglnI_SeYBLGDP_-LHCazYJb66HESdHVbo2foXCv63qnZy7Fi7p7wzNoqiApl73vbN4AnrR2BYPVu6bfOSvX4qT5thsfDFvm5vgOvuoC_Dk6qWzj4eIwx-hlcj9PH4Pp00OWJtOgYEJ2QUmqQglOQBRS5ZbHuZQyivIo5xHlGpiwhNNKkrIEoaQupZJVxcDGXJSxBj5G1_vej9Z99uA7s3R9ux5eGhZRrYcyJgYX27uK1nnfQmU-2npl242hxGyhmh1Us4VqDlCH0NU-VAPAf0DzeDhK_gcL-nGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519965524</pqid></control><display><type>article</type><title>A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ryu, Junha ; Park, Gwangtae ; Im, Dongseok ; Kim, Ji-Hoon ; Yoo, Hoi-Jun</creator><creatorcontrib>Ryu, Junha ; Park, Gwangtae ; Im, Dongseok ; Kim, Ji-Hoon ; Yoo, Hoi-Jun</creatorcontrib><description>An always-on video-based human action recognition (HAR) system on chip (SoC) integrated with a CMOS image sensor (CIS) is proposed for the Internet of Things (IoT) devices. The proposed SoC is the first always-on integrated circuit (IC) performing the full process of HAR in a single chip. To resolve large power consumption from vision sensor and compute-intensive DNN operation, the proposed SoC operates in two different modes; 1) in adaptive frame resolution based human action recognition (AFR-HAR) mode, CIS resolution prediction algorithm and self-adjustable CIS reduce 42.9-91.8% of readout power by adaptively adjusting frame resolution. 2) In motion event detection (MED) mode, the motion event detection unit (MEDU) skips unnecessary imaging and DNN computation by monitoring motion events and leads to over 99% power saving. The proposed HAR SoC is simulated in 65-nm CMOS technology and occupies 8.56 mm 2 . It consumes only 0.82 <inline-formula> <tex-math notation="LaTeX">{\mu }\text{W} </tex-math></inline-formula> when no motion is detected and 0.31-8.52 mW for evaluating human actions on the ActivityNet dataset.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2021.3067151</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Always-on ; CMOS ; CMOS image sensor ; deep neural network ; Event detection ; Generators ; human action recognition ; Human activity recognition ; Human motion ; Image resolution ; Integrated circuits ; Internet of Things ; motion detection ; Motion perception ; Object recognition ; Power consumption ; Power demand ; Power management ; Prediction algorithms ; resolution-adaptive ; Signal resolution ; Skips ; System on chip</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2021-05, Vol.68 (5), p.1700-1704</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-d0fc7430e4c67ba38b66655b5b35139e24a031f60dde4769d676ff2ea834d89e3</cites><orcidid>0000-0002-9132-0311 ; 0000-0002-4895-0369 ; 0000-0002-5856-8921 ; 0000-0001-8147-3085 ; 0000-0002-6661-4879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9381516$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ryu, Junha</creatorcontrib><creatorcontrib>Park, Gwangtae</creatorcontrib><creatorcontrib>Im, Dongseok</creatorcontrib><creatorcontrib>Kim, Ji-Hoon</creatorcontrib><creatorcontrib>Yoo, Hoi-Jun</creatorcontrib><title>A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>An always-on video-based human action recognition (HAR) system on chip (SoC) integrated with a CMOS image sensor (CIS) is proposed for the Internet of Things (IoT) devices. The proposed SoC is the first always-on integrated circuit (IC) performing the full process of HAR in a single chip. To resolve large power consumption from vision sensor and compute-intensive DNN operation, the proposed SoC operates in two different modes; 1) in adaptive frame resolution based human action recognition (AFR-HAR) mode, CIS resolution prediction algorithm and self-adjustable CIS reduce 42.9-91.8% of readout power by adaptively adjusting frame resolution. 2) In motion event detection (MED) mode, the motion event detection unit (MEDU) skips unnecessary imaging and DNN computation by monitoring motion events and leads to over 99% power saving. The proposed HAR SoC is simulated in 65-nm CMOS technology and occupies 8.56 mm 2 . It consumes only 0.82 <inline-formula> <tex-math notation="LaTeX">{\mu }\text{W} </tex-math></inline-formula> when no motion is detected and 0.31-8.52 mW for evaluating human actions on the ActivityNet dataset.</description><subject>Algorithms</subject><subject>Always-on</subject><subject>CMOS</subject><subject>CMOS image sensor</subject><subject>deep neural network</subject><subject>Event detection</subject><subject>Generators</subject><subject>human action recognition</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Image resolution</subject><subject>Integrated circuits</subject><subject>Internet of Things</subject><subject>motion detection</subject><subject>Motion perception</subject><subject>Object recognition</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Power management</subject><subject>Prediction algorithms</subject><subject>resolution-adaptive</subject><subject>Signal resolution</subject><subject>Skips</subject><subject>System on chip</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhS0EEqVwAdhYYp3gv9jxMgQKkSoh0aIuLSeZQEpaQ5yAejfOwJlIf8Rq3mjeeyN9CF1SElJK9M08nWVZyAijISdS0YgeoRGNojjgStPjrRY6UEqoU3Tm_ZIQpglnI_SeYBLGDP_-LHCazYJb66HESdHVbo2foXCv63qnZy7Fi7p7wzNoqiApl73vbN4AnrR2BYPVu6bfOSvX4qT5thsfDFvm5vgOvuoC_Dk6qWzj4eIwx-hlcj9PH4Pp00OWJtOgYEJ2QUmqQglOQBRS5ZbHuZQyivIo5xHlGpiwhNNKkrIEoaQupZJVxcDGXJSxBj5G1_vej9Z99uA7s3R9ux5eGhZRrYcyJgYX27uK1nnfQmU-2npl242hxGyhmh1Us4VqDlCH0NU-VAPAf0DzeDhK_gcL-nGg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ryu, Junha</creator><creator>Park, Gwangtae</creator><creator>Im, Dongseok</creator><creator>Kim, Ji-Hoon</creator><creator>Yoo, Hoi-Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9132-0311</orcidid><orcidid>https://orcid.org/0000-0002-4895-0369</orcidid><orcidid>https://orcid.org/0000-0002-5856-8921</orcidid><orcidid>https://orcid.org/0000-0001-8147-3085</orcidid><orcidid>https://orcid.org/0000-0002-6661-4879</orcidid></search><sort><creationdate>20210501</creationdate><title>A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices</title><author>Ryu, Junha ; Park, Gwangtae ; Im, Dongseok ; Kim, Ji-Hoon ; Yoo, Hoi-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-d0fc7430e4c67ba38b66655b5b35139e24a031f60dde4769d676ff2ea834d89e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Always-on</topic><topic>CMOS</topic><topic>CMOS image sensor</topic><topic>deep neural network</topic><topic>Event detection</topic><topic>Generators</topic><topic>human action recognition</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Image resolution</topic><topic>Integrated circuits</topic><topic>Internet of Things</topic><topic>motion detection</topic><topic>Motion perception</topic><topic>Object recognition</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Power management</topic><topic>Prediction algorithms</topic><topic>resolution-adaptive</topic><topic>Signal resolution</topic><topic>Skips</topic><topic>System on chip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Junha</creatorcontrib><creatorcontrib>Park, Gwangtae</creatorcontrib><creatorcontrib>Im, Dongseok</creatorcontrib><creatorcontrib>Kim, Ji-Hoon</creatorcontrib><creatorcontrib>Yoo, Hoi-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Junha</au><au>Park, Gwangtae</au><au>Im, Dongseok</au><au>Kim, Ji-Hoon</au><au>Yoo, Hoi-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>68</volume><issue>5</issue><spage>1700</spage><epage>1704</epage><pages>1700-1704</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>An always-on video-based human action recognition (HAR) system on chip (SoC) integrated with a CMOS image sensor (CIS) is proposed for the Internet of Things (IoT) devices. The proposed SoC is the first always-on integrated circuit (IC) performing the full process of HAR in a single chip. To resolve large power consumption from vision sensor and compute-intensive DNN operation, the proposed SoC operates in two different modes; 1) in adaptive frame resolution based human action recognition (AFR-HAR) mode, CIS resolution prediction algorithm and self-adjustable CIS reduce 42.9-91.8% of readout power by adaptively adjusting frame resolution. 2) In motion event detection (MED) mode, the motion event detection unit (MEDU) skips unnecessary imaging and DNN computation by monitoring motion events and leads to over 99% power saving. The proposed HAR SoC is simulated in 65-nm CMOS technology and occupies 8.56 mm 2 . It consumes only 0.82 <inline-formula> <tex-math notation="LaTeX">{\mu }\text{W} </tex-math></inline-formula> when no motion is detected and 0.31-8.52 mW for evaluating human actions on the ActivityNet dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2021.3067151</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9132-0311</orcidid><orcidid>https://orcid.org/0000-0002-4895-0369</orcidid><orcidid>https://orcid.org/0000-0002-5856-8921</orcidid><orcidid>https://orcid.org/0000-0001-8147-3085</orcidid><orcidid>https://orcid.org/0000-0002-6661-4879</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2021-05, Vol.68 (5), p.1700-1704 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_proquest_journals_2519965524 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Always-on CMOS CMOS image sensor deep neural network Event detection Generators human action recognition Human activity recognition Human motion Image resolution Integrated circuits Internet of Things motion detection Motion perception Object recognition Power consumption Power demand Power management Prediction algorithms resolution-adaptive Signal resolution Skips System on chip |
title | A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%200.82%20%CE%BCW%20CIS-Based%20Action%20Recognition%20SoC%20With%20Self-Adjustable%20Frame%20Resolution%20for%20Always-on%20IoT%20Devices&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Ryu,%20Junha&rft.date=2021-05-01&rft.volume=68&rft.issue=5&rft.spage=1700&rft.epage=1704&rft.pages=1700-1704&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2021.3067151&rft_dat=%3Cproquest_cross%3E2519965524%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-d0fc7430e4c67ba38b66655b5b35139e24a031f60dde4769d676ff2ea834d89e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2519965524&rft_id=info:pmid/&rft_ieee_id=9381516&rfr_iscdi=true |