Loading…

A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices

An always-on video-based human action recognition (HAR) system on chip (SoC) integrated with a CMOS image sensor (CIS) is proposed for the Internet of Things (IoT) devices. The proposed SoC is the first always-on integrated circuit (IC) performing the full process of HAR in a single chip. To resolve...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-05, Vol.68 (5), p.1700-1704
Main Authors: Ryu, Junha, Park, Gwangtae, Im, Dongseok, Kim, Ji-Hoon, Yoo, Hoi-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-d0fc7430e4c67ba38b66655b5b35139e24a031f60dde4769d676ff2ea834d89e3
container_end_page 1704
container_issue 5
container_start_page 1700
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 68
creator Ryu, Junha
Park, Gwangtae
Im, Dongseok
Kim, Ji-Hoon
Yoo, Hoi-Jun
description An always-on video-based human action recognition (HAR) system on chip (SoC) integrated with a CMOS image sensor (CIS) is proposed for the Internet of Things (IoT) devices. The proposed SoC is the first always-on integrated circuit (IC) performing the full process of HAR in a single chip. To resolve large power consumption from vision sensor and compute-intensive DNN operation, the proposed SoC operates in two different modes; 1) in adaptive frame resolution based human action recognition (AFR-HAR) mode, CIS resolution prediction algorithm and self-adjustable CIS reduce 42.9-91.8% of readout power by adaptively adjusting frame resolution. 2) In motion event detection (MED) mode, the motion event detection unit (MEDU) skips unnecessary imaging and DNN computation by monitoring motion events and leads to over 99% power saving. The proposed HAR SoC is simulated in 65-nm CMOS technology and occupies 8.56 mm 2 . It consumes only 0.82 {\mu }\text{W} when no motion is detected and 0.31-8.52 mW for evaluating human actions on the ActivityNet dataset.
doi_str_mv 10.1109/TCSII.2021.3067151
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519965524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9381516</ieee_id><sourcerecordid>2519965524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-d0fc7430e4c67ba38b66655b5b35139e24a031f60dde4769d676ff2ea834d89e3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EEqVwAdhYYp3gv9jxMgQKkSoh0aIuLSeZQEpaQ5yAejfOwJlIf8Rq3mjeeyN9CF1SElJK9M08nWVZyAijISdS0YgeoRGNojjgStPjrRY6UEqoU3Tm_ZIQpglnI_SeYBLGDP_-LHCazYJb66HESdHVbo2foXCv63qnZy7Fi7p7wzNoqiApl73vbN4AnrR2BYPVu6bfOSvX4qT5thsfDFvm5vgOvuoC_Dk6qWzj4eIwx-hlcj9PH4Pp00OWJtOgYEJ2QUmqQglOQBRS5ZbHuZQyivIo5xHlGpiwhNNKkrIEoaQupZJVxcDGXJSxBj5G1_vej9Z99uA7s3R9ux5eGhZRrYcyJgYX27uK1nnfQmU-2npl242hxGyhmh1Us4VqDlCH0NU-VAPAf0DzeDhK_gcL-nGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519965524</pqid></control><display><type>article</type><title>A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ryu, Junha ; Park, Gwangtae ; Im, Dongseok ; Kim, Ji-Hoon ; Yoo, Hoi-Jun</creator><creatorcontrib>Ryu, Junha ; Park, Gwangtae ; Im, Dongseok ; Kim, Ji-Hoon ; Yoo, Hoi-Jun</creatorcontrib><description>An always-on video-based human action recognition (HAR) system on chip (SoC) integrated with a CMOS image sensor (CIS) is proposed for the Internet of Things (IoT) devices. The proposed SoC is the first always-on integrated circuit (IC) performing the full process of HAR in a single chip. To resolve large power consumption from vision sensor and compute-intensive DNN operation, the proposed SoC operates in two different modes; 1) in adaptive frame resolution based human action recognition (AFR-HAR) mode, CIS resolution prediction algorithm and self-adjustable CIS reduce 42.9-91.8% of readout power by adaptively adjusting frame resolution. 2) In motion event detection (MED) mode, the motion event detection unit (MEDU) skips unnecessary imaging and DNN computation by monitoring motion events and leads to over 99% power saving. The proposed HAR SoC is simulated in 65-nm CMOS technology and occupies 8.56 mm 2 . It consumes only 0.82 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{\mu }\text{W} &lt;/tex-math&gt;&lt;/inline-formula&gt; when no motion is detected and 0.31-8.52 mW for evaluating human actions on the ActivityNet dataset.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2021.3067151</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Always-on ; CMOS ; CMOS image sensor ; deep neural network ; Event detection ; Generators ; human action recognition ; Human activity recognition ; Human motion ; Image resolution ; Integrated circuits ; Internet of Things ; motion detection ; Motion perception ; Object recognition ; Power consumption ; Power demand ; Power management ; Prediction algorithms ; resolution-adaptive ; Signal resolution ; Skips ; System on chip</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2021-05, Vol.68 (5), p.1700-1704</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-d0fc7430e4c67ba38b66655b5b35139e24a031f60dde4769d676ff2ea834d89e3</cites><orcidid>0000-0002-9132-0311 ; 0000-0002-4895-0369 ; 0000-0002-5856-8921 ; 0000-0001-8147-3085 ; 0000-0002-6661-4879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9381516$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ryu, Junha</creatorcontrib><creatorcontrib>Park, Gwangtae</creatorcontrib><creatorcontrib>Im, Dongseok</creatorcontrib><creatorcontrib>Kim, Ji-Hoon</creatorcontrib><creatorcontrib>Yoo, Hoi-Jun</creatorcontrib><title>A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>An always-on video-based human action recognition (HAR) system on chip (SoC) integrated with a CMOS image sensor (CIS) is proposed for the Internet of Things (IoT) devices. The proposed SoC is the first always-on integrated circuit (IC) performing the full process of HAR in a single chip. To resolve large power consumption from vision sensor and compute-intensive DNN operation, the proposed SoC operates in two different modes; 1) in adaptive frame resolution based human action recognition (AFR-HAR) mode, CIS resolution prediction algorithm and self-adjustable CIS reduce 42.9-91.8% of readout power by adaptively adjusting frame resolution. 2) In motion event detection (MED) mode, the motion event detection unit (MEDU) skips unnecessary imaging and DNN computation by monitoring motion events and leads to over 99% power saving. The proposed HAR SoC is simulated in 65-nm CMOS technology and occupies 8.56 mm 2 . It consumes only 0.82 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{\mu }\text{W} &lt;/tex-math&gt;&lt;/inline-formula&gt; when no motion is detected and 0.31-8.52 mW for evaluating human actions on the ActivityNet dataset.</description><subject>Algorithms</subject><subject>Always-on</subject><subject>CMOS</subject><subject>CMOS image sensor</subject><subject>deep neural network</subject><subject>Event detection</subject><subject>Generators</subject><subject>human action recognition</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Image resolution</subject><subject>Integrated circuits</subject><subject>Internet of Things</subject><subject>motion detection</subject><subject>Motion perception</subject><subject>Object recognition</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Power management</subject><subject>Prediction algorithms</subject><subject>resolution-adaptive</subject><subject>Signal resolution</subject><subject>Skips</subject><subject>System on chip</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhS0EEqVwAdhYYp3gv9jxMgQKkSoh0aIuLSeZQEpaQ5yAejfOwJlIf8Rq3mjeeyN9CF1SElJK9M08nWVZyAijISdS0YgeoRGNojjgStPjrRY6UEqoU3Tm_ZIQpglnI_SeYBLGDP_-LHCazYJb66HESdHVbo2foXCv63qnZy7Fi7p7wzNoqiApl73vbN4AnrR2BYPVu6bfOSvX4qT5thsfDFvm5vgOvuoC_Dk6qWzj4eIwx-hlcj9PH4Pp00OWJtOgYEJ2QUmqQglOQBRS5ZbHuZQyivIo5xHlGpiwhNNKkrIEoaQupZJVxcDGXJSxBj5G1_vej9Z99uA7s3R9ux5eGhZRrYcyJgYX27uK1nnfQmU-2npl242hxGyhmh1Us4VqDlCH0NU-VAPAf0DzeDhK_gcL-nGg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ryu, Junha</creator><creator>Park, Gwangtae</creator><creator>Im, Dongseok</creator><creator>Kim, Ji-Hoon</creator><creator>Yoo, Hoi-Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9132-0311</orcidid><orcidid>https://orcid.org/0000-0002-4895-0369</orcidid><orcidid>https://orcid.org/0000-0002-5856-8921</orcidid><orcidid>https://orcid.org/0000-0001-8147-3085</orcidid><orcidid>https://orcid.org/0000-0002-6661-4879</orcidid></search><sort><creationdate>20210501</creationdate><title>A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices</title><author>Ryu, Junha ; Park, Gwangtae ; Im, Dongseok ; Kim, Ji-Hoon ; Yoo, Hoi-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-d0fc7430e4c67ba38b66655b5b35139e24a031f60dde4769d676ff2ea834d89e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Always-on</topic><topic>CMOS</topic><topic>CMOS image sensor</topic><topic>deep neural network</topic><topic>Event detection</topic><topic>Generators</topic><topic>human action recognition</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Image resolution</topic><topic>Integrated circuits</topic><topic>Internet of Things</topic><topic>motion detection</topic><topic>Motion perception</topic><topic>Object recognition</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Power management</topic><topic>Prediction algorithms</topic><topic>resolution-adaptive</topic><topic>Signal resolution</topic><topic>Skips</topic><topic>System on chip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Junha</creatorcontrib><creatorcontrib>Park, Gwangtae</creatorcontrib><creatorcontrib>Im, Dongseok</creatorcontrib><creatorcontrib>Kim, Ji-Hoon</creatorcontrib><creatorcontrib>Yoo, Hoi-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Junha</au><au>Park, Gwangtae</au><au>Im, Dongseok</au><au>Kim, Ji-Hoon</au><au>Yoo, Hoi-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>68</volume><issue>5</issue><spage>1700</spage><epage>1704</epage><pages>1700-1704</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>An always-on video-based human action recognition (HAR) system on chip (SoC) integrated with a CMOS image sensor (CIS) is proposed for the Internet of Things (IoT) devices. The proposed SoC is the first always-on integrated circuit (IC) performing the full process of HAR in a single chip. To resolve large power consumption from vision sensor and compute-intensive DNN operation, the proposed SoC operates in two different modes; 1) in adaptive frame resolution based human action recognition (AFR-HAR) mode, CIS resolution prediction algorithm and self-adjustable CIS reduce 42.9-91.8% of readout power by adaptively adjusting frame resolution. 2) In motion event detection (MED) mode, the motion event detection unit (MEDU) skips unnecessary imaging and DNN computation by monitoring motion events and leads to over 99% power saving. The proposed HAR SoC is simulated in 65-nm CMOS technology and occupies 8.56 mm 2 . It consumes only 0.82 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{\mu }\text{W} &lt;/tex-math&gt;&lt;/inline-formula&gt; when no motion is detected and 0.31-8.52 mW for evaluating human actions on the ActivityNet dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2021.3067151</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9132-0311</orcidid><orcidid>https://orcid.org/0000-0002-4895-0369</orcidid><orcidid>https://orcid.org/0000-0002-5856-8921</orcidid><orcidid>https://orcid.org/0000-0001-8147-3085</orcidid><orcidid>https://orcid.org/0000-0002-6661-4879</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2021-05, Vol.68 (5), p.1700-1704
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2519965524
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Always-on
CMOS
CMOS image sensor
deep neural network
Event detection
Generators
human action recognition
Human activity recognition
Human motion
Image resolution
Integrated circuits
Internet of Things
motion detection
Motion perception
Object recognition
Power consumption
Power demand
Power management
Prediction algorithms
resolution-adaptive
Signal resolution
Skips
System on chip
title A 0.82 μW CIS-Based Action Recognition SoC With Self-Adjustable Frame Resolution for Always-on IoT Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%200.82%20%CE%BCW%20CIS-Based%20Action%20Recognition%20SoC%20With%20Self-Adjustable%20Frame%20Resolution%20for%20Always-on%20IoT%20Devices&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Ryu,%20Junha&rft.date=2021-05-01&rft.volume=68&rft.issue=5&rft.spage=1700&rft.epage=1704&rft.pages=1700-1704&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2021.3067151&rft_dat=%3Cproquest_cross%3E2519965524%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-d0fc7430e4c67ba38b66655b5b35139e24a031f60dde4769d676ff2ea834d89e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2519965524&rft_id=info:pmid/&rft_ieee_id=9381516&rfr_iscdi=true