Loading…

A Novel Technique for Early Detection of COVID-19

COVID-19 is a global pandemic disease, which results from a dangerous coronavirus attack, and spreads aggressively through close contacts with infected people and artifacts. So far, there is not any prescribed line of treatment for COVID-19 patients. Measures to control the disease are very limited,...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua materials & continua, 2021-01, Vol.68 (2), p.2283-2298
Main Authors: Yamin, Mohammad, Ahmed Abi Sen, Adnan, Mahmoud AlKubaisy, Zenah, Almarzouki, Rahaf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:COVID-19 is a global pandemic disease, which results from a dangerous coronavirus attack, and spreads aggressively through close contacts with infected people and artifacts. So far, there is not any prescribed line of treatment for COVID-19 patients. Measures to control the disease are very limited, partly due to the lack of knowledge about technologies which could be effectively used for early detection and control the disease. Early detection of positive cases is critical in preventing further spread, achieving the herd immunity, and saving lives. Unfortunately, so far we do not have effective toolkits to diagnose very early detection of the disease. Recent research findings have suggested that radiology images, such as X-rays, contain significant information to detect the presence of COVID-19 virus in early stages. However, to detect the presence of the disease in in very early stages from the X-ray images by the naked eye is not possible. Artificial Intelligence (AI) techniques, machine learning in particular, are known to be very helpful in accurately diagnosing many diseases from radiology images. This paper proposes an automatic technique to classify COVID-19 patients from their computerized tomography (CT) scan images. The technique is known as Advanced Inception based Recurrent Residual Convolution Neural Network (AIRRCNN), which uses machine learning techniques for classifying data. We focus on the Advanced Inception based Recurrent Residual Convolution Neural Network, because we do not find it being used in the literature. Also, we conduct principal component analysis, which is used for dimensional deduction. Experimental results of our method have demonstrated an accuracy of about 99%, which is regarded to be very efficient.
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2021.017433