Loading…

Joint Position and Time Allocation Optimization of UAV-Aided Wireless Powered Relay Communication Systems

The Internet of things (IoT) has emerged as a platform for connecting massive physical devices to collect and analyze data for decision-making. Wireless devices in IoT are usually energy-constrained and thus need to be powered by a stable and reliable energy source in order to maintain a long networ...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing 2021, Vol.2021 (1)
Main Authors: Di, Xiaofei, Chen, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Internet of things (IoT) has emerged as a platform for connecting massive physical devices to collect and analyze data for decision-making. Wireless devices in IoT are usually energy-constrained and thus need to be powered by a stable and reliable energy source in order to maintain a long network lifetime. An unmanned aerial vehicle (UAV) as an energy source is a proper and applicable way to supply energy to wireless devices in IoT, due to its flexibility and potential of providing line-of-sight (LOS) links for wireless air-to-ground channels. In this paper, a UAV-aided wireless powered relay communication system is presented, where a UAV firstly emits energy to a source and a relay, and then, the source and relay cooperatively transmit information to their destination. To explore the performance limit of the system, a problem is formulated by jointly optimizing the position of the UAV and time allocation to maximize the achievable information rate of the system. By deriving the explicit expressions of the optimal position of UAV and optimal time fraction, the nonconvex optimization problem is efficiently solved. Simulation results show that our proposed method significantly outperforms the benchmark methods.
ISSN:1530-8669
1530-8677
DOI:10.1155/2021/5537517