Loading…
Abnormal Access Behavior Detection of Ideological and Political MOOCs in Colleges and Universities
In many colleges and universities, MOOCs have been applied in many courses, including ideological and political course, which is very important for college students’ ideological and moral education. Ideological and political MOOCs break the limitations of time and space, and students can convenientl...
Saved in:
Published in: | Mobile information systems 2021-04, Vol.2021, p.1-9 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In many colleges and universities, MOOCs have been applied in many courses, including ideological and political course, which is very important for college students’ ideological and moral education. Ideological and political MOOCs break the limitations of time and space, and students can conveniently and quickly learn ideological and political courses through the network. However, due to the openness of MOOCs, there may be some abnormal access behaviors, affecting the normal process of MOOCs. Therefore, in this paper, we propose a detection method of abnormal access behavior of ideological and political MOOCs in colleges and universities. Based on deep learning, the network behavior detection model is established to distinguish whether the network behavior is normal, so as to detect the abnormal access network behavior. In order to prove the effectiveness and efficiency of the proposed algorithm, the algorithm is compared with the other two network abnormal behavior detection methods, and the results prove that the proposed method can effectively detect the abnormal access behavior in ideological and political MOOCs. |
---|---|
ISSN: | 1574-017X 1875-905X |
DOI: | 10.1155/2021/9977736 |