Loading…
Extended magnesium and calcium force field parameters for accurate ion–nucleic acid interactions in biomolecular simulations
Magnesium and calcium play an essential role in the folding and function of nucleic acids. To correctly describe their interactions with DNA and RNA in biomolecular simulations, an accurate parameterization is crucial. In most cases, the ion parameters are optimized based on a set of experimental so...
Saved in:
Published in: | The Journal of chemical physics 2021-05, Vol.154 (17), p.171102-171102 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnesium and calcium play an essential role in the folding and function of nucleic acids. To correctly describe their interactions with DNA and RNA in biomolecular simulations, an accurate parameterization is crucial. In most cases, the ion parameters are optimized based on a set of experimental solution properties such as solvation free energies, radial distribution functions, water exchange rates, and activity coefficient derivatives. However, the transferability of such bulk-optimized ion parameters to quantitatively describe biomolecular systems is limited. Here, we extend the applicability of our previous bulk-optimized parameters by including experimental binding affinities toward the phosphate oxygen on nucleic acids. In particular, we systematically adjust the combination rules that are an integral part of the pairwise interaction potentials of classical force fields. This allows us to quantitatively describe specific ion binding to nucleic acids without changing the solution properties in the most simple and efficient way. We show the advancement of the optimized Lorentz combination rule for two representative nucleic acid systems. For double-stranded DNA, the optimized combination rule for Ca2+ significantly improves the agreement with experiments, while the standard combination rule leads to unrealistically distorted DNA structures. For the add A-riboswitch, the optimized combination rule for Mg2+ improves the structure of two specifically bound Mg2+ ions as judged by the experimental distance to the binding site. Including experimental binding affinities toward specific ion binding sites on biomolecules, therefore, provides a promising perspective to develop a more accurate description of metal cations for biomolecular simulations. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0048113 |