Loading…
End-to-End Attention-based Image Captioning
In this paper, we address the problem of image captioning specifically for molecular translation where the result would be a predicted chemical notation in InChI format for a given molecular structure. Current approaches mainly follow rule-based or CNN+RNN based methodology. However, they seem to un...
Saved in:
Published in: | arXiv.org 2021-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sundaramoorthy, Carola Lin Ziwen Kelvin Sarin, Mahak Gupta, Shubham |
description | In this paper, we address the problem of image captioning specifically for molecular translation where the result would be a predicted chemical notation in InChI format for a given molecular structure. Current approaches mainly follow rule-based or CNN+RNN based methodology. However, they seem to underperform on noisy images and images with small number of distinguishable features. To overcome this, we propose an end-to-end transformer model. When compared to attention-based techniques, our proposed model outperforms on molecular datasets. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2521274431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521274431</sourcerecordid><originalsourceid>FETCH-proquest_journals_25212744313</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQds1L0S3J1wVSCo4lJal5JZn5ebpJicWpKQqeuYnpqQrOiQUgscy8dB4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcyNTI0MjcxMTY0Jk4VAP0PMIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521274431</pqid></control><display><type>article</type><title>End-to-End Attention-based Image Captioning</title><source>Publicly Available Content Database</source><creator>Sundaramoorthy, Carola ; Lin Ziwen Kelvin ; Sarin, Mahak ; Gupta, Shubham</creator><creatorcontrib>Sundaramoorthy, Carola ; Lin Ziwen Kelvin ; Sarin, Mahak ; Gupta, Shubham</creatorcontrib><description>In this paper, we address the problem of image captioning specifically for molecular translation where the result would be a predicted chemical notation in InChI format for a given molecular structure. Current approaches mainly follow rule-based or CNN+RNN based methodology. However, they seem to underperform on noisy images and images with small number of distinguishable features. To overcome this, we propose an end-to-end transformer model. When compared to attention-based techniques, our proposed model outperforms on molecular datasets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Molecular structure</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2521274431?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Sundaramoorthy, Carola</creatorcontrib><creatorcontrib>Lin Ziwen Kelvin</creatorcontrib><creatorcontrib>Sarin, Mahak</creatorcontrib><creatorcontrib>Gupta, Shubham</creatorcontrib><title>End-to-End Attention-based Image Captioning</title><title>arXiv.org</title><description>In this paper, we address the problem of image captioning specifically for molecular translation where the result would be a predicted chemical notation in InChI format for a given molecular structure. Current approaches mainly follow rule-based or CNN+RNN based methodology. However, they seem to underperform on noisy images and images with small number of distinguishable features. To overcome this, we propose an end-to-end transformer model. When compared to attention-based techniques, our proposed model outperforms on molecular datasets.</description><subject>Molecular structure</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQds1L0S3J1wVSCo4lJal5JZn5ebpJicWpKQqeuYnpqQrOiQUgscy8dB4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcyNTI0MjcxMTY0Jk4VAP0PMIo</recordid><startdate>20210430</startdate><enddate>20210430</enddate><creator>Sundaramoorthy, Carola</creator><creator>Lin Ziwen Kelvin</creator><creator>Sarin, Mahak</creator><creator>Gupta, Shubham</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210430</creationdate><title>End-to-End Attention-based Image Captioning</title><author>Sundaramoorthy, Carola ; Lin Ziwen Kelvin ; Sarin, Mahak ; Gupta, Shubham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25212744313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Molecular structure</topic><toplevel>online_resources</toplevel><creatorcontrib>Sundaramoorthy, Carola</creatorcontrib><creatorcontrib>Lin Ziwen Kelvin</creatorcontrib><creatorcontrib>Sarin, Mahak</creatorcontrib><creatorcontrib>Gupta, Shubham</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundaramoorthy, Carola</au><au>Lin Ziwen Kelvin</au><au>Sarin, Mahak</au><au>Gupta, Shubham</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>End-to-End Attention-based Image Captioning</atitle><jtitle>arXiv.org</jtitle><date>2021-04-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, we address the problem of image captioning specifically for molecular translation where the result would be a predicted chemical notation in InChI format for a given molecular structure. Current approaches mainly follow rule-based or CNN+RNN based methodology. However, they seem to underperform on noisy images and images with small number of distinguishable features. To overcome this, we propose an end-to-end transformer model. When compared to attention-based techniques, our proposed model outperforms on molecular datasets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2521274431 |
source | Publicly Available Content Database |
subjects | Molecular structure |
title | End-to-End Attention-based Image Captioning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=End-to-End%20Attention-based%20Image%20Captioning&rft.jtitle=arXiv.org&rft.au=Sundaramoorthy,%20Carola&rft.date=2021-04-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2521274431%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25212744313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2521274431&rft_id=info:pmid/&rfr_iscdi=true |