Loading…

Surface reaction kinetics of the methanol synthesis and the water gas shift reaction on Cu/ZnO/Al2O3

A three-site mean-field extended microkinetic model was developed based on ab initio DFT calculations from the literature, in order to simulate the conversion of syngas (H2/CO/CO2) to methanol on Cu (211) and Cu/Zn (211). The reaction network consists of 25 reversible reactions, including CO and CO2...

Full description

Saved in:
Bibliographic Details
Published in:Reaction chemistry & engineering 2021-05, Vol.6 (5), p.868-887
Main Authors: Bruno Lacerda de Oliveira Campos, Karla Herrera Delgado, Wild, Stefan, Studt, Felix, Pitter, Stephan, Sauer, Jörg
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 887
container_issue 5
container_start_page 868
container_title Reaction chemistry & engineering
container_volume 6
creator Bruno Lacerda de Oliveira Campos
Karla Herrera Delgado
Wild, Stefan
Studt, Felix
Pitter, Stephan
Sauer, Jörg
description A three-site mean-field extended microkinetic model was developed based on ab initio DFT calculations from the literature, in order to simulate the conversion of syngas (H2/CO/CO2) to methanol on Cu (211) and Cu/Zn (211). The reaction network consists of 25 reversible reactions, including CO and CO2 hydrogenation to methanol and the water-gas shift reaction. Catalyst structural changes are also considered in the model. Experiments were performed in a plug flow reactor on Cu/ZnO/Al2O3 at various gas hourly space velocities (24–40 L h−1 gcat−1), temperatures (210–260 °C), pressures (40–60 bar), hydrogen feed concentrations (35–60% v/v), CO feed concentrations (3–30% v/v), and CO2 feed concentrations (0–20% v/v). These experiments, together with experimental data from the literature, were used for a broad validation of the model (a total of 690 points), which adequately reproduced the measurements. A degree of rate control analysis showed that the hydrogenation of formic acid is the major rate controlling step, and formate is the most sensitive surface species. The developed model contributes to the understanding of the reaction kinetics, and should be applicable for industrial processes (e.g. scale-up and optimization).
doi_str_mv 10.1039/d1re00040c
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2521465812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521465812</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-3ac37561b2de5b568fb3b587bf4807fe9a796ae3ed950c6fee9790ea1bf3402b3</originalsourceid><addsrcrecordid>eNpFjU1LxDAYhIMguKx78RcEPNe-SZo2OS7FL1joQb14WZL2je1a0zVJEf-9xRWEgWFm4BlCrhjcMBA671hAACigPSMrDlJlWilxQTYxHpaelQBCVSvSPc3BmRZpQNOmYfL0ffCYhjbSydHUI_3A1Bs_jTR--yXHIVLju9_pyyQM9M1EGvvBpX_GonrOX32Tb0feiEty7swYcfPna_Jyd_tcP2S75v6x3u6yI2c6ZcK0opIls7xDaWWpnBVWqsq6QkHlUJtKlwYFdlpCWzpEXWlAw6wTBXAr1uT6xD2G6XPGmPaHaQ5-udxzyVlRSsW4-AHIa1ZZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521465812</pqid></control><display><type>article</type><title>Surface reaction kinetics of the methanol synthesis and the water gas shift reaction on Cu/ZnO/Al2O3</title><source>Royal Society of Chemistry</source><creator>Bruno Lacerda de Oliveira Campos ; Karla Herrera Delgado ; Wild, Stefan ; Studt, Felix ; Pitter, Stephan ; Sauer, Jörg</creator><creatorcontrib>Bruno Lacerda de Oliveira Campos ; Karla Herrera Delgado ; Wild, Stefan ; Studt, Felix ; Pitter, Stephan ; Sauer, Jörg</creatorcontrib><description>A three-site mean-field extended microkinetic model was developed based on ab initio DFT calculations from the literature, in order to simulate the conversion of syngas (H2/CO/CO2) to methanol on Cu (211) and Cu/Zn (211). The reaction network consists of 25 reversible reactions, including CO and CO2 hydrogenation to methanol and the water-gas shift reaction. Catalyst structural changes are also considered in the model. Experiments were performed in a plug flow reactor on Cu/ZnO/Al2O3 at various gas hourly space velocities (24–40 L h−1 gcat−1), temperatures (210–260 °C), pressures (40–60 bar), hydrogen feed concentrations (35–60% v/v), CO feed concentrations (3–30% v/v), and CO2 feed concentrations (0–20% v/v). These experiments, together with experimental data from the literature, were used for a broad validation of the model (a total of 690 points), which adequately reproduced the measurements. A degree of rate control analysis showed that the hydrogenation of formic acid is the major rate controlling step, and formate is the most sensitive surface species. The developed model contributes to the understanding of the reaction kinetics, and should be applicable for industrial processes (e.g. scale-up and optimization).</description><identifier>EISSN: 2058-9883</identifier><identifier>DOI: 10.1039/d1re00040c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Carbon dioxide ; Formic acid ; Hydrogenation ; Methanol ; Optimization ; Plug flow chemical reactors ; Reaction kinetics ; Shift reaction ; Surface reactions ; Synthesis gas ; Water gas ; Zinc oxide</subject><ispartof>Reaction chemistry &amp; engineering, 2021-05, Vol.6 (5), p.868-887</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bruno Lacerda de Oliveira Campos</creatorcontrib><creatorcontrib>Karla Herrera Delgado</creatorcontrib><creatorcontrib>Wild, Stefan</creatorcontrib><creatorcontrib>Studt, Felix</creatorcontrib><creatorcontrib>Pitter, Stephan</creatorcontrib><creatorcontrib>Sauer, Jörg</creatorcontrib><title>Surface reaction kinetics of the methanol synthesis and the water gas shift reaction on Cu/ZnO/Al2O3</title><title>Reaction chemistry &amp; engineering</title><description>A three-site mean-field extended microkinetic model was developed based on ab initio DFT calculations from the literature, in order to simulate the conversion of syngas (H2/CO/CO2) to methanol on Cu (211) and Cu/Zn (211). The reaction network consists of 25 reversible reactions, including CO and CO2 hydrogenation to methanol and the water-gas shift reaction. Catalyst structural changes are also considered in the model. Experiments were performed in a plug flow reactor on Cu/ZnO/Al2O3 at various gas hourly space velocities (24–40 L h−1 gcat−1), temperatures (210–260 °C), pressures (40–60 bar), hydrogen feed concentrations (35–60% v/v), CO feed concentrations (3–30% v/v), and CO2 feed concentrations (0–20% v/v). These experiments, together with experimental data from the literature, were used for a broad validation of the model (a total of 690 points), which adequately reproduced the measurements. A degree of rate control analysis showed that the hydrogenation of formic acid is the major rate controlling step, and formate is the most sensitive surface species. The developed model contributes to the understanding of the reaction kinetics, and should be applicable for industrial processes (e.g. scale-up and optimization).</description><subject>Aluminum oxide</subject><subject>Carbon dioxide</subject><subject>Formic acid</subject><subject>Hydrogenation</subject><subject>Methanol</subject><subject>Optimization</subject><subject>Plug flow chemical reactors</subject><subject>Reaction kinetics</subject><subject>Shift reaction</subject><subject>Surface reactions</subject><subject>Synthesis gas</subject><subject>Water gas</subject><subject>Zinc oxide</subject><issn>2058-9883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFjU1LxDAYhIMguKx78RcEPNe-SZo2OS7FL1joQb14WZL2je1a0zVJEf-9xRWEgWFm4BlCrhjcMBA671hAACigPSMrDlJlWilxQTYxHpaelQBCVSvSPc3BmRZpQNOmYfL0ffCYhjbSydHUI_3A1Bs_jTR--yXHIVLju9_pyyQM9M1EGvvBpX_GonrOX32Tb0feiEty7swYcfPna_Jyd_tcP2S75v6x3u6yI2c6ZcK0opIls7xDaWWpnBVWqsq6QkHlUJtKlwYFdlpCWzpEXWlAw6wTBXAr1uT6xD2G6XPGmPaHaQ5-udxzyVlRSsW4-AHIa1ZZ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Bruno Lacerda de Oliveira Campos</creator><creator>Karla Herrera Delgado</creator><creator>Wild, Stefan</creator><creator>Studt, Felix</creator><creator>Pitter, Stephan</creator><creator>Sauer, Jörg</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210501</creationdate><title>Surface reaction kinetics of the methanol synthesis and the water gas shift reaction on Cu/ZnO/Al2O3</title><author>Bruno Lacerda de Oliveira Campos ; Karla Herrera Delgado ; Wild, Stefan ; Studt, Felix ; Pitter, Stephan ; Sauer, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-3ac37561b2de5b568fb3b587bf4807fe9a796ae3ed950c6fee9790ea1bf3402b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Carbon dioxide</topic><topic>Formic acid</topic><topic>Hydrogenation</topic><topic>Methanol</topic><topic>Optimization</topic><topic>Plug flow chemical reactors</topic><topic>Reaction kinetics</topic><topic>Shift reaction</topic><topic>Surface reactions</topic><topic>Synthesis gas</topic><topic>Water gas</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruno Lacerda de Oliveira Campos</creatorcontrib><creatorcontrib>Karla Herrera Delgado</creatorcontrib><creatorcontrib>Wild, Stefan</creatorcontrib><creatorcontrib>Studt, Felix</creatorcontrib><creatorcontrib>Pitter, Stephan</creatorcontrib><creatorcontrib>Sauer, Jörg</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Reaction chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruno Lacerda de Oliveira Campos</au><au>Karla Herrera Delgado</au><au>Wild, Stefan</au><au>Studt, Felix</au><au>Pitter, Stephan</au><au>Sauer, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface reaction kinetics of the methanol synthesis and the water gas shift reaction on Cu/ZnO/Al2O3</atitle><jtitle>Reaction chemistry &amp; engineering</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>6</volume><issue>5</issue><spage>868</spage><epage>887</epage><pages>868-887</pages><eissn>2058-9883</eissn><abstract>A three-site mean-field extended microkinetic model was developed based on ab initio DFT calculations from the literature, in order to simulate the conversion of syngas (H2/CO/CO2) to methanol on Cu (211) and Cu/Zn (211). The reaction network consists of 25 reversible reactions, including CO and CO2 hydrogenation to methanol and the water-gas shift reaction. Catalyst structural changes are also considered in the model. Experiments were performed in a plug flow reactor on Cu/ZnO/Al2O3 at various gas hourly space velocities (24–40 L h−1 gcat−1), temperatures (210–260 °C), pressures (40–60 bar), hydrogen feed concentrations (35–60% v/v), CO feed concentrations (3–30% v/v), and CO2 feed concentrations (0–20% v/v). These experiments, together with experimental data from the literature, were used for a broad validation of the model (a total of 690 points), which adequately reproduced the measurements. A degree of rate control analysis showed that the hydrogenation of formic acid is the major rate controlling step, and formate is the most sensitive surface species. The developed model contributes to the understanding of the reaction kinetics, and should be applicable for industrial processes (e.g. scale-up and optimization).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1re00040c</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2058-9883
ispartof Reaction chemistry & engineering, 2021-05, Vol.6 (5), p.868-887
issn 2058-9883
language eng
recordid cdi_proquest_journals_2521465812
source Royal Society of Chemistry
subjects Aluminum oxide
Carbon dioxide
Formic acid
Hydrogenation
Methanol
Optimization
Plug flow chemical reactors
Reaction kinetics
Shift reaction
Surface reactions
Synthesis gas
Water gas
Zinc oxide
title Surface reaction kinetics of the methanol synthesis and the water gas shift reaction on Cu/ZnO/Al2O3
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20reaction%20kinetics%20of%20the%20methanol%20synthesis%20and%20the%20water%20gas%20shift%20reaction%20on%20Cu/ZnO/Al2O3&rft.jtitle=Reaction%20chemistry%20&%20engineering&rft.au=Bruno%20Lacerda%20de%20Oliveira%20Campos&rft.date=2021-05-01&rft.volume=6&rft.issue=5&rft.spage=868&rft.epage=887&rft.pages=868-887&rft.eissn=2058-9883&rft_id=info:doi/10.1039/d1re00040c&rft_dat=%3Cproquest%3E2521465812%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p219t-3ac37561b2de5b568fb3b587bf4807fe9a796ae3ed950c6fee9790ea1bf3402b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2521465812&rft_id=info:pmid/&rfr_iscdi=true