Loading…
Thermochromatographic behavior of iodine in 316L stainless steel columns when evaporated from lead–bismuth eutectic
Iodine evaporated from lead–bismuth eutectic (LBE) has been examined with respect to its adsorption behavior on stainless steel in various gases to establish a base for safety evaluations on LBE based nuclear reactors. In inert conditions the iodine forms a single species with an adsorption enthalpy...
Saved in:
Published in: | Journal of radioanalytical and nuclear chemistry 2021-05, Vol.328 (2), p.691-699 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Iodine evaporated from lead–bismuth eutectic (LBE) has been examined with respect to its adsorption behavior on stainless steel in various gases to establish a base for safety evaluations on LBE based nuclear reactors. In inert conditions the iodine forms a single species with an adsorption enthalpy between − 97 and − 106 kJ/mol. The adsorbed species is tentatively identified as bismuth monoiodide, BiI. Addition of moisture to the inert gas has no substantial influence on the adsorption behaviour. For the reducing hydrogen carrier gas depositions with adsorption enthalpies ranging from − 87 to − 134 kJ/mol were observed in dry and water saturated conditions. The larger variation of adsorption enthalpies compared to analogous experiments in helium likely result from surface effects induced by the reactive gas. Formation of highly volatile species such as hydrogen iodide HI was not observed. In oxidizing conditions multiple iodine species with adsorption enthalpies ranging from − 67 to − 83 kJ/mol were observed, with the exception of one experiment where only a lower limit of –Δ
H
ads
|
---|---|
ISSN: | 0236-5731 1588-2780 |
DOI: | 10.1007/s10967-021-07682-3 |