Loading…
Quantum Kasner transition in a locally rotationally symmetric Bianchi II universe
The Belinski-Khalatnikov-Lifshitz (BKL) conjecture predicts a chaotic alternation of Kasner epochs in the evolution of generic classical spacetimes towards a spacelike singularity. As a first step towards understanding the full quantum BKL scenario, we analyze a vacuum Bianchi II model with local ro...
Saved in:
Published in: | arXiv.org 2021-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alonso-Serrano, Ana Brizuela, David Uria, Sara F |
description | The Belinski-Khalatnikov-Lifshitz (BKL) conjecture predicts a chaotic alternation of Kasner epochs in the evolution of generic classical spacetimes towards a spacelike singularity. As a first step towards understanding the full quantum BKL scenario, we analyze a vacuum Bianchi II model with local rotational symmetry, which presents just one Kasner transition. During the Kasner epochs, the quantum state is coherent and it is thus characterized by constant values of the different quantum fluctuations, correlations and higher-order moments. By computing the constants of motion of the system we provide, for any peaked semiclassical state, the explicit analytical transition rules that relate the parametrization of the asymptotic coherent state before and after the transition. In particular, we obtain the modification of the transition rules for the classical variables due to quantum back-reaction effects. This analysis is performed by considering a high-order truncation in moments (the full computations are performed up to fifth-order, which corresponds to neglecting terms of an order \(\hbar^3\)), providing a solid estimate about the quantum modifications to the classical model. Finally, in order to understand the dynamics of the state during the transition, we perform some numerical simulations for an initial Gaussian state, that show that the initial and final equilibrium values of the quantum variables are connected by strong and rapid oscillations. |
doi_str_mv | 10.48550/arxiv.2105.00647 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2521808472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521808472</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-6a34a30297791ebf43d033908e0b568e56a6aa7dd35d688daad6dfeff22029b63</originalsourceid><addsrcrecordid>eNotjstqwzAUREWh0JDmA7oTdG33-sqS5WUb-jANlED24dqSqYItt5Icmr9v-lgNc2AOw9hNAXmppYQ7Cl_umGMBMgdQZXXBFihEkekS8YqtYjwAAKoKpRQLtt3O5NM88leK3gaeAvnokps8d54TH6aOhuHEw5Toh_6WeBpHm4Lr-IMj37073jR89u5oQ7TX7LKnIdrVfy7Z7ulxt37JNm_Pzfp-k5FEzBSJkgRgXVV1Ydu-FAaEqEFbaKXSVipSRJUxQhqltSEyyvS27xHPo1aJJbv9036E6XO2Me0P0xzO_-IeJRYadFmh-Aa8blGG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521808472</pqid></control><display><type>article</type><title>Quantum Kasner transition in a locally rotationally symmetric Bianchi II universe</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Alonso-Serrano, Ana ; Brizuela, David ; Uria, Sara F</creator><creatorcontrib>Alonso-Serrano, Ana ; Brizuela, David ; Uria, Sara F</creatorcontrib><description>The Belinski-Khalatnikov-Lifshitz (BKL) conjecture predicts a chaotic alternation of Kasner epochs in the evolution of generic classical spacetimes towards a spacelike singularity. As a first step towards understanding the full quantum BKL scenario, we analyze a vacuum Bianchi II model with local rotational symmetry, which presents just one Kasner transition. During the Kasner epochs, the quantum state is coherent and it is thus characterized by constant values of the different quantum fluctuations, correlations and higher-order moments. By computing the constants of motion of the system we provide, for any peaked semiclassical state, the explicit analytical transition rules that relate the parametrization of the asymptotic coherent state before and after the transition. In particular, we obtain the modification of the transition rules for the classical variables due to quantum back-reaction effects. This analysis is performed by considering a high-order truncation in moments (the full computations are performed up to fifth-order, which corresponds to neglecting terms of an order \(\hbar^3\)), providing a solid estimate about the quantum modifications to the classical model. Finally, in order to understand the dynamics of the state during the transition, we perform some numerical simulations for an initial Gaussian state, that show that the initial and final equilibrium values of the quantum variables are connected by strong and rapid oscillations.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2105.00647</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical models ; Parameterization ; Symmetry ; Transition rules</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2521808472?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Alonso-Serrano, Ana</creatorcontrib><creatorcontrib>Brizuela, David</creatorcontrib><creatorcontrib>Uria, Sara F</creatorcontrib><title>Quantum Kasner transition in a locally rotationally symmetric Bianchi II universe</title><title>arXiv.org</title><description>The Belinski-Khalatnikov-Lifshitz (BKL) conjecture predicts a chaotic alternation of Kasner epochs in the evolution of generic classical spacetimes towards a spacelike singularity. As a first step towards understanding the full quantum BKL scenario, we analyze a vacuum Bianchi II model with local rotational symmetry, which presents just one Kasner transition. During the Kasner epochs, the quantum state is coherent and it is thus characterized by constant values of the different quantum fluctuations, correlations and higher-order moments. By computing the constants of motion of the system we provide, for any peaked semiclassical state, the explicit analytical transition rules that relate the parametrization of the asymptotic coherent state before and after the transition. In particular, we obtain the modification of the transition rules for the classical variables due to quantum back-reaction effects. This analysis is performed by considering a high-order truncation in moments (the full computations are performed up to fifth-order, which corresponds to neglecting terms of an order \(\hbar^3\)), providing a solid estimate about the quantum modifications to the classical model. Finally, in order to understand the dynamics of the state during the transition, we perform some numerical simulations for an initial Gaussian state, that show that the initial and final equilibrium values of the quantum variables are connected by strong and rapid oscillations.</description><subject>Mathematical models</subject><subject>Parameterization</subject><subject>Symmetry</subject><subject>Transition rules</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAUREWh0JDmA7oTdG33-sqS5WUb-jANlED24dqSqYItt5Icmr9v-lgNc2AOw9hNAXmppYQ7Cl_umGMBMgdQZXXBFihEkekS8YqtYjwAAKoKpRQLtt3O5NM88leK3gaeAvnokps8d54TH6aOhuHEw5Toh_6WeBpHm4Lr-IMj37073jR89u5oQ7TX7LKnIdrVfy7Z7ulxt37JNm_Pzfp-k5FEzBSJkgRgXVV1Ydu-FAaEqEFbaKXSVipSRJUxQhqltSEyyvS27xHPo1aJJbv9036E6XO2Me0P0xzO_-IeJRYadFmh-Aa8blGG</recordid><startdate>20210607</startdate><enddate>20210607</enddate><creator>Alonso-Serrano, Ana</creator><creator>Brizuela, David</creator><creator>Uria, Sara F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210607</creationdate><title>Quantum Kasner transition in a locally rotationally symmetric Bianchi II universe</title><author>Alonso-Serrano, Ana ; Brizuela, David ; Uria, Sara F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-6a34a30297791ebf43d033908e0b568e56a6aa7dd35d688daad6dfeff22029b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical models</topic><topic>Parameterization</topic><topic>Symmetry</topic><topic>Transition rules</topic><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Serrano, Ana</creatorcontrib><creatorcontrib>Brizuela, David</creatorcontrib><creatorcontrib>Uria, Sara F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Serrano, Ana</au><au>Brizuela, David</au><au>Uria, Sara F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Kasner transition in a locally rotationally symmetric Bianchi II universe</atitle><jtitle>arXiv.org</jtitle><date>2021-06-07</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The Belinski-Khalatnikov-Lifshitz (BKL) conjecture predicts a chaotic alternation of Kasner epochs in the evolution of generic classical spacetimes towards a spacelike singularity. As a first step towards understanding the full quantum BKL scenario, we analyze a vacuum Bianchi II model with local rotational symmetry, which presents just one Kasner transition. During the Kasner epochs, the quantum state is coherent and it is thus characterized by constant values of the different quantum fluctuations, correlations and higher-order moments. By computing the constants of motion of the system we provide, for any peaked semiclassical state, the explicit analytical transition rules that relate the parametrization of the asymptotic coherent state before and after the transition. In particular, we obtain the modification of the transition rules for the classical variables due to quantum back-reaction effects. This analysis is performed by considering a high-order truncation in moments (the full computations are performed up to fifth-order, which corresponds to neglecting terms of an order \(\hbar^3\)), providing a solid estimate about the quantum modifications to the classical model. Finally, in order to understand the dynamics of the state during the transition, we perform some numerical simulations for an initial Gaussian state, that show that the initial and final equilibrium values of the quantum variables are connected by strong and rapid oscillations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2105.00647</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2521808472 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Mathematical models Parameterization Symmetry Transition rules |
title | Quantum Kasner transition in a locally rotationally symmetric Bianchi II universe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Kasner%20transition%20in%20a%20locally%20rotationally%20symmetric%20Bianchi%20II%20universe&rft.jtitle=arXiv.org&rft.au=Alonso-Serrano,%20Ana&rft.date=2021-06-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2105.00647&rft_dat=%3Cproquest%3E2521808472%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-6a34a30297791ebf43d033908e0b568e56a6aa7dd35d688daad6dfeff22029b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2521808472&rft_id=info:pmid/&rfr_iscdi=true |