Loading…

Graph Learning Based Head Movement Prediction for Interactive 360 Video Streaming

Ultra-high definition (UHD) 360 videos encoded in fine quality are typically too large to stream in its entirety over bandwidth (BW)-constrained networks. One popular approach is to interactively extract and send a spatial sub-region corresponding to a viewer's current field-of-view (FoV) in a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2021, Vol.30, p.4622-4636
Main Authors: Zhang, Xue, Cheung, Gene, Zhao, Yao, Le Callet, Patrick, Lin, Chunyu, Tan, Jack Z. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultra-high definition (UHD) 360 videos encoded in fine quality are typically too large to stream in its entirety over bandwidth (BW)-constrained networks. One popular approach is to interactively extract and send a spatial sub-region corresponding to a viewer's current field-of-view (FoV) in a head-mounted display (HMD) for more BW-efficient streaming. Due to the non-negligible round-trip-time (RTT) delay between server and client, accurate head movement prediction foretelling a viewer's future FoVs is essential. In this paper, we cast the head movement prediction task as a sparse directed graph learning problem: three sources of relevant information-collected viewers' head movement traces, a 360 image saliency map, and a biological human head model-are distilled into a view transition Markov model. Specifically, we formulate a constrained maximum a posteriori (MAP) problem with likelihood and prior terms defined using the three information sources. We solve the MAP problem alternately using a hybrid iterative reweighted least square (IRLS) and Frank-Wolfe (FW) optimization strategy. In each FW iteration, a linear program (LP) is solved, whose runtime is reduced thanks to warm start initialization. Having estimated a Markov model from data, we employ it to optimize a tile-based 360 video streaming system. Extensive experiments show that our head movement prediction scheme noticeably outperformed existing proposals, and our optimized tile-based streaming scheme outperformed competitors in rate-distortion performance.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2021.3073283