Loading…

Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions

This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequal...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.64945-64957
Main Authors: Lazarini, Adalberto Z. N., Teixeira, Marcelo C. M., De S. Ribeiro, Jean M., Assuncao, Edvaldo, Cardim, Rodrigo, Buzetti, Ariel S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753
cites cdi_FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753
container_end_page 64957
container_issue
container_start_page 64945
container_title IEEE access
container_volume 9
creator Lazarini, Adalberto Z. N.
Teixeira, Marcelo C. M.
De S. Ribeiro, Jean M.
Assuncao, Edvaldo
Cardim, Rodrigo
Buzetti, Ariel S.
description This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequalities (LMI). The FLF is given by V(x(t)) = x(t)^{T}P(\alpha (x(t)))x(t) , where x(t) is the plant state vector, P(\alpha (x(t))) = \alpha _{1}(x(t))P_{1} + \alpha _{2}(x(t))P_{2} + \cdots + \alpha _{r}(x(t))P_{r} , P_{i}=P_{i}^{T} > 0 and \alpha _{i}(x(t)) is the weight related to the local model i in the representation of the plant by TS fuzzy models, for i=1,2,\cdots,r . When one calculates the time derivative of this V(x(t)) , it appears the term x(t)^{T}\dot {P}(\alpha (x(t)))x(t) , that is usually handled using conservative upper bounds, supposing that the bounds of the time derivative of \alpha _{i}(x(t)) , i=1,2,\cdots,r , are available. The main result of this paper is a procedure to obtain optimal upper bounds for the term x(t)^{T}\dot {P}(\alpha (x(t)))x(t) , such that they contemplate the maximum value and are always smaller than or equal to the maximum value. It is a relevant result on this subject, because these optimal upper bounds do not add any constraint. With these optimal upper bounds, a relaxed design method for stabilization of TS fuzzy models is proposed. Two numerical examples illustrate the effectiveness of this procedure.
doi_str_mv 10.1109/ACCESS.2021.3076030
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2522216844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9416573</ieee_id><doaj_id>oai_doaj_org_article_4f51dce9c18241d1a5d49befaf774975</doaj_id><sourcerecordid>2522216844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaGFhjS_IBdBz7vVlyX7mLpJGlgI1Bt6FLI0SrR4LVe2l-xe88erXS-humjm8d6bYV6W3RC8JASX32-r6q6ulxRTsmRYCszwRXZJiSgXLGfi03_1l-x6GDY4vSJBubzM3n9Dq9_AonrUjW_9QY8-dKgKnfXHakAuRLSu0f10OOxRvR9G2A7ojx9f0VM_-q1u0XPfQ0Q_wtTZmT6-Alr7LaCfEP0uOe4ABXe2WO11P3Vhl9rOnEZ8zT473Q5wff6vsuf7u3X1a7F6enisblcLw3ExLqRmwmAmuRbGSSsscEost0YLV1LT5AkA4ohr0gk0FKIREhpnXC60dDJnV9nj7GuD3qg-puXjXgXt1QkI8UXpOHrTguIuJ9ZAaUhBObFE55aXDTjtpOTlyevb7NXH8HeCYVSbMMUura9oTmm6eMF5YrGZZWIYhgjuYyrB6hiemsNTx_DUObykuplVHgA-FCUnIpeM_QOdmphY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522216844</pqid></control><display><type>article</type><title>Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions</title><source>IEEE Xplore Open Access Journals</source><creator>Lazarini, Adalberto Z. N. ; Teixeira, Marcelo C. M. ; De S. Ribeiro, Jean M. ; Assuncao, Edvaldo ; Cardim, Rodrigo ; Buzetti, Ariel S.</creator><creatorcontrib>Lazarini, Adalberto Z. N. ; Teixeira, Marcelo C. M. ; De S. Ribeiro, Jean M. ; Assuncao, Edvaldo ; Cardim, Rodrigo ; Buzetti, Ariel S.</creatorcontrib><description><![CDATA[This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequalities (LMI). The FLF is given by <inline-formula> <tex-math notation="LaTeX">V(x(t)) = x(t)^{T}P(\alpha (x(t)))x(t) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">x(t) </tex-math></inline-formula> is the plant state vector, <inline-formula> <tex-math notation="LaTeX">P(\alpha (x(t))) = \alpha _{1}(x(t))P_{1} + \alpha _{2}(x(t))P_{2} + \cdots + \alpha _{r}(x(t))P_{r} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">P_{i}=P_{i}^{T} > 0 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula> is the weight related to the local model <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula> in the representation of the plant by TS fuzzy models, for <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>. When one calculates the time derivative of this <inline-formula> <tex-math notation="LaTeX">V(x(t)) </tex-math></inline-formula>, it appears the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, that is usually handled using conservative upper bounds, supposing that the bounds of the time derivative of <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>, are available. The main result of this paper is a procedure to obtain optimal upper bounds for the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, such that they contemplate the maximum value and are always smaller than or equal to the maximum value. It is a relevant result on this subject, because these optimal upper bounds do not add any constraint. With these optimal upper bounds, a relaxed design method for stabilization of TS fuzzy models is proposed. Two numerical examples illustrate the effectiveness of this procedure.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3076030</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Derivatives ; fuzzy control ; Fuzzy Lyapunov function (FLF) ; Fuzzy systems ; Liapunov functions ; Linear matrix inequalities ; linear matrix inequalities (LMIs) ; Lyapunov methods ; Mathematical analysis ; Nonlinear control ; Numerical models ; Optimization ; Performance analysis ; stability ; Stabilization ; State vectors ; Takagi-Sugeno (TS) fuzzy systems ; Takagi-Sugeno model ; Upper bound ; Upper bounds</subject><ispartof>IEEE access, 2021, Vol.9, p.64945-64957</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753</citedby><cites>FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753</cites><orcidid>0000-0002-1072-3814 ; 0000-0002-9197-2475 ; 0000-0002-2996-2831 ; 0000-0001-8380-5573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9416573$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Lazarini, Adalberto Z. N.</creatorcontrib><creatorcontrib>Teixeira, Marcelo C. M.</creatorcontrib><creatorcontrib>De S. Ribeiro, Jean M.</creatorcontrib><creatorcontrib>Assuncao, Edvaldo</creatorcontrib><creatorcontrib>Cardim, Rodrigo</creatorcontrib><creatorcontrib>Buzetti, Ariel S.</creatorcontrib><title>Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequalities (LMI). The FLF is given by <inline-formula> <tex-math notation="LaTeX">V(x(t)) = x(t)^{T}P(\alpha (x(t)))x(t) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">x(t) </tex-math></inline-formula> is the plant state vector, <inline-formula> <tex-math notation="LaTeX">P(\alpha (x(t))) = \alpha _{1}(x(t))P_{1} + \alpha _{2}(x(t))P_{2} + \cdots + \alpha _{r}(x(t))P_{r} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">P_{i}=P_{i}^{T} > 0 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula> is the weight related to the local model <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula> in the representation of the plant by TS fuzzy models, for <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>. When one calculates the time derivative of this <inline-formula> <tex-math notation="LaTeX">V(x(t)) </tex-math></inline-formula>, it appears the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, that is usually handled using conservative upper bounds, supposing that the bounds of the time derivative of <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>, are available. The main result of this paper is a procedure to obtain optimal upper bounds for the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, such that they contemplate the maximum value and are always smaller than or equal to the maximum value. It is a relevant result on this subject, because these optimal upper bounds do not add any constraint. With these optimal upper bounds, a relaxed design method for stabilization of TS fuzzy models is proposed. Two numerical examples illustrate the effectiveness of this procedure.]]></description><subject>Derivatives</subject><subject>fuzzy control</subject><subject>Fuzzy Lyapunov function (FLF)</subject><subject>Fuzzy systems</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequalities (LMIs)</subject><subject>Lyapunov methods</subject><subject>Mathematical analysis</subject><subject>Nonlinear control</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Performance analysis</subject><subject>stability</subject><subject>Stabilization</subject><subject>State vectors</subject><subject>Takagi-Sugeno (TS) fuzzy systems</subject><subject>Takagi-Sugeno model</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaGFhjS_IBdBz7vVlyX7mLpJGlgI1Bt6FLI0SrR4LVe2l-xe88erXS-humjm8d6bYV6W3RC8JASX32-r6q6ulxRTsmRYCszwRXZJiSgXLGfi03_1l-x6GDY4vSJBubzM3n9Dq9_AonrUjW_9QY8-dKgKnfXHakAuRLSu0f10OOxRvR9G2A7ojx9f0VM_-q1u0XPfQ0Q_wtTZmT6-Alr7LaCfEP0uOe4ABXe2WO11P3Vhl9rOnEZ8zT473Q5wff6vsuf7u3X1a7F6enisblcLw3ExLqRmwmAmuRbGSSsscEost0YLV1LT5AkA4ohr0gk0FKIREhpnXC60dDJnV9nj7GuD3qg-puXjXgXt1QkI8UXpOHrTguIuJ9ZAaUhBObFE55aXDTjtpOTlyevb7NXH8HeCYVSbMMUura9oTmm6eMF5YrGZZWIYhgjuYyrB6hiemsNTx_DUObykuplVHgA-FCUnIpeM_QOdmphY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lazarini, Adalberto Z. N.</creator><creator>Teixeira, Marcelo C. M.</creator><creator>De S. Ribeiro, Jean M.</creator><creator>Assuncao, Edvaldo</creator><creator>Cardim, Rodrigo</creator><creator>Buzetti, Ariel S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1072-3814</orcidid><orcidid>https://orcid.org/0000-0002-9197-2475</orcidid><orcidid>https://orcid.org/0000-0002-2996-2831</orcidid><orcidid>https://orcid.org/0000-0001-8380-5573</orcidid></search><sort><creationdate>2021</creationdate><title>Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions</title><author>Lazarini, Adalberto Z. N. ; Teixeira, Marcelo C. M. ; De S. Ribeiro, Jean M. ; Assuncao, Edvaldo ; Cardim, Rodrigo ; Buzetti, Ariel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Derivatives</topic><topic>fuzzy control</topic><topic>Fuzzy Lyapunov function (FLF)</topic><topic>Fuzzy systems</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequalities (LMIs)</topic><topic>Lyapunov methods</topic><topic>Mathematical analysis</topic><topic>Nonlinear control</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Performance analysis</topic><topic>stability</topic><topic>Stabilization</topic><topic>State vectors</topic><topic>Takagi-Sugeno (TS) fuzzy systems</topic><topic>Takagi-Sugeno model</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazarini, Adalberto Z. N.</creatorcontrib><creatorcontrib>Teixeira, Marcelo C. M.</creatorcontrib><creatorcontrib>De S. Ribeiro, Jean M.</creatorcontrib><creatorcontrib>Assuncao, Edvaldo</creatorcontrib><creatorcontrib>Cardim, Rodrigo</creatorcontrib><creatorcontrib>Buzetti, Ariel S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazarini, Adalberto Z. N.</au><au>Teixeira, Marcelo C. M.</au><au>De S. Ribeiro, Jean M.</au><au>Assuncao, Edvaldo</au><au>Cardim, Rodrigo</au><au>Buzetti, Ariel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>64945</spage><epage>64957</epage><pages>64945-64957</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequalities (LMI). The FLF is given by <inline-formula> <tex-math notation="LaTeX">V(x(t)) = x(t)^{T}P(\alpha (x(t)))x(t) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">x(t) </tex-math></inline-formula> is the plant state vector, <inline-formula> <tex-math notation="LaTeX">P(\alpha (x(t))) = \alpha _{1}(x(t))P_{1} + \alpha _{2}(x(t))P_{2} + \cdots + \alpha _{r}(x(t))P_{r} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">P_{i}=P_{i}^{T} > 0 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula> is the weight related to the local model <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula> in the representation of the plant by TS fuzzy models, for <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>. When one calculates the time derivative of this <inline-formula> <tex-math notation="LaTeX">V(x(t)) </tex-math></inline-formula>, it appears the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, that is usually handled using conservative upper bounds, supposing that the bounds of the time derivative of <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>, are available. The main result of this paper is a procedure to obtain optimal upper bounds for the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, such that they contemplate the maximum value and are always smaller than or equal to the maximum value. It is a relevant result on this subject, because these optimal upper bounds do not add any constraint. With these optimal upper bounds, a relaxed design method for stabilization of TS fuzzy models is proposed. Two numerical examples illustrate the effectiveness of this procedure.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3076030</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1072-3814</orcidid><orcidid>https://orcid.org/0000-0002-9197-2475</orcidid><orcidid>https://orcid.org/0000-0002-2996-2831</orcidid><orcidid>https://orcid.org/0000-0001-8380-5573</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.64945-64957
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2522216844
source IEEE Xplore Open Access Journals
subjects Derivatives
fuzzy control
Fuzzy Lyapunov function (FLF)
Fuzzy systems
Liapunov functions
Linear matrix inequalities
linear matrix inequalities (LMIs)
Lyapunov methods
Mathematical analysis
Nonlinear control
Numerical models
Optimization
Performance analysis
stability
Stabilization
State vectors
Takagi-Sugeno (TS) fuzzy systems
Takagi-Sugeno model
Upper bound
Upper bounds
title Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxed%20Stabilization%20Conditions%20for%20TS%20Fuzzy%20Systems%20With%20Optimal%20Upper%20Bounds%20for%20the%20Time%20Derivative%20of%20Fuzzy%20Lyapunov%20Functions&rft.jtitle=IEEE%20access&rft.au=Lazarini,%20Adalberto%20Z.%20N.&rft.date=2021&rft.volume=9&rft.spage=64945&rft.epage=64957&rft.pages=64945-64957&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3076030&rft_dat=%3Cproquest_ieee_%3E2522216844%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522216844&rft_id=info:pmid/&rft_ieee_id=9416573&rfr_iscdi=true