Loading…
Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions
This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequal...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.64945-64957 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753 |
container_end_page | 64957 |
container_issue | |
container_start_page | 64945 |
container_title | IEEE access |
container_volume | 9 |
creator | Lazarini, Adalberto Z. N. Teixeira, Marcelo C. M. De S. Ribeiro, Jean M. Assuncao, Edvaldo Cardim, Rodrigo Buzetti, Ariel S. |
description | This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequalities (LMI). The FLF is given by V(x(t)) = x(t)^{T}P(\alpha (x(t)))x(t) , where x(t) is the plant state vector, P(\alpha (x(t))) = \alpha _{1}(x(t))P_{1} + \alpha _{2}(x(t))P_{2} + \cdots + \alpha _{r}(x(t))P_{r} , P_{i}=P_{i}^{T} > 0 and \alpha _{i}(x(t)) is the weight related to the local model i in the representation of the plant by TS fuzzy models, for i=1,2,\cdots,r . When one calculates the time derivative of this V(x(t)) , it appears the term x(t)^{T}\dot {P}(\alpha (x(t)))x(t) , that is usually handled using conservative upper bounds, supposing that the bounds of the time derivative of \alpha _{i}(x(t)) , i=1,2,\cdots,r , are available. The main result of this paper is a procedure to obtain optimal upper bounds for the term x(t)^{T}\dot {P}(\alpha (x(t)))x(t) , such that they contemplate the maximum value and are always smaller than or equal to the maximum value. It is a relevant result on this subject, because these optimal upper bounds do not add any constraint. With these optimal upper bounds, a relaxed design method for stabilization of TS fuzzy models is proposed. Two numerical examples illustrate the effectiveness of this procedure. |
doi_str_mv | 10.1109/ACCESS.2021.3076030 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2522216844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9416573</ieee_id><doaj_id>oai_doaj_org_article_4f51dce9c18241d1a5d49befaf774975</doaj_id><sourcerecordid>2522216844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaGFhjS_IBdBz7vVlyX7mLpJGlgI1Bt6FLI0SrR4LVe2l-xe88erXS-humjm8d6bYV6W3RC8JASX32-r6q6ulxRTsmRYCszwRXZJiSgXLGfi03_1l-x6GDY4vSJBubzM3n9Dq9_AonrUjW_9QY8-dKgKnfXHakAuRLSu0f10OOxRvR9G2A7ojx9f0VM_-q1u0XPfQ0Q_wtTZmT6-Alr7LaCfEP0uOe4ABXe2WO11P3Vhl9rOnEZ8zT473Q5wff6vsuf7u3X1a7F6enisblcLw3ExLqRmwmAmuRbGSSsscEost0YLV1LT5AkA4ohr0gk0FKIREhpnXC60dDJnV9nj7GuD3qg-puXjXgXt1QkI8UXpOHrTguIuJ9ZAaUhBObFE55aXDTjtpOTlyevb7NXH8HeCYVSbMMUura9oTmm6eMF5YrGZZWIYhgjuYyrB6hiemsNTx_DUObykuplVHgA-FCUnIpeM_QOdmphY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522216844</pqid></control><display><type>article</type><title>Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions</title><source>IEEE Xplore Open Access Journals</source><creator>Lazarini, Adalberto Z. N. ; Teixeira, Marcelo C. M. ; De S. Ribeiro, Jean M. ; Assuncao, Edvaldo ; Cardim, Rodrigo ; Buzetti, Ariel S.</creator><creatorcontrib>Lazarini, Adalberto Z. N. ; Teixeira, Marcelo C. M. ; De S. Ribeiro, Jean M. ; Assuncao, Edvaldo ; Cardim, Rodrigo ; Buzetti, Ariel S.</creatorcontrib><description><![CDATA[This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequalities (LMI). The FLF is given by <inline-formula> <tex-math notation="LaTeX">V(x(t)) = x(t)^{T}P(\alpha (x(t)))x(t) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">x(t) </tex-math></inline-formula> is the plant state vector, <inline-formula> <tex-math notation="LaTeX">P(\alpha (x(t))) = \alpha _{1}(x(t))P_{1} + \alpha _{2}(x(t))P_{2} + \cdots + \alpha _{r}(x(t))P_{r} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">P_{i}=P_{i}^{T} > 0 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula> is the weight related to the local model <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula> in the representation of the plant by TS fuzzy models, for <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>. When one calculates the time derivative of this <inline-formula> <tex-math notation="LaTeX">V(x(t)) </tex-math></inline-formula>, it appears the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, that is usually handled using conservative upper bounds, supposing that the bounds of the time derivative of <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>, are available. The main result of this paper is a procedure to obtain optimal upper bounds for the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, such that they contemplate the maximum value and are always smaller than or equal to the maximum value. It is a relevant result on this subject, because these optimal upper bounds do not add any constraint. With these optimal upper bounds, a relaxed design method for stabilization of TS fuzzy models is proposed. Two numerical examples illustrate the effectiveness of this procedure.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3076030</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Derivatives ; fuzzy control ; Fuzzy Lyapunov function (FLF) ; Fuzzy systems ; Liapunov functions ; Linear matrix inequalities ; linear matrix inequalities (LMIs) ; Lyapunov methods ; Mathematical analysis ; Nonlinear control ; Numerical models ; Optimization ; Performance analysis ; stability ; Stabilization ; State vectors ; Takagi-Sugeno (TS) fuzzy systems ; Takagi-Sugeno model ; Upper bound ; Upper bounds</subject><ispartof>IEEE access, 2021, Vol.9, p.64945-64957</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753</citedby><cites>FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753</cites><orcidid>0000-0002-1072-3814 ; 0000-0002-9197-2475 ; 0000-0002-2996-2831 ; 0000-0001-8380-5573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9416573$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Lazarini, Adalberto Z. N.</creatorcontrib><creatorcontrib>Teixeira, Marcelo C. M.</creatorcontrib><creatorcontrib>De S. Ribeiro, Jean M.</creatorcontrib><creatorcontrib>Assuncao, Edvaldo</creatorcontrib><creatorcontrib>Cardim, Rodrigo</creatorcontrib><creatorcontrib>Buzetti, Ariel S.</creatorcontrib><title>Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequalities (LMI). The FLF is given by <inline-formula> <tex-math notation="LaTeX">V(x(t)) = x(t)^{T}P(\alpha (x(t)))x(t) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">x(t) </tex-math></inline-formula> is the plant state vector, <inline-formula> <tex-math notation="LaTeX">P(\alpha (x(t))) = \alpha _{1}(x(t))P_{1} + \alpha _{2}(x(t))P_{2} + \cdots + \alpha _{r}(x(t))P_{r} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">P_{i}=P_{i}^{T} > 0 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula> is the weight related to the local model <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula> in the representation of the plant by TS fuzzy models, for <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>. When one calculates the time derivative of this <inline-formula> <tex-math notation="LaTeX">V(x(t)) </tex-math></inline-formula>, it appears the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, that is usually handled using conservative upper bounds, supposing that the bounds of the time derivative of <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>, are available. The main result of this paper is a procedure to obtain optimal upper bounds for the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, such that they contemplate the maximum value and are always smaller than or equal to the maximum value. It is a relevant result on this subject, because these optimal upper bounds do not add any constraint. With these optimal upper bounds, a relaxed design method for stabilization of TS fuzzy models is proposed. Two numerical examples illustrate the effectiveness of this procedure.]]></description><subject>Derivatives</subject><subject>fuzzy control</subject><subject>Fuzzy Lyapunov function (FLF)</subject><subject>Fuzzy systems</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequalities (LMIs)</subject><subject>Lyapunov methods</subject><subject>Mathematical analysis</subject><subject>Nonlinear control</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Performance analysis</subject><subject>stability</subject><subject>Stabilization</subject><subject>State vectors</subject><subject>Takagi-Sugeno (TS) fuzzy systems</subject><subject>Takagi-Sugeno model</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaGFhjS_IBdBz7vVlyX7mLpJGlgI1Bt6FLI0SrR4LVe2l-xe88erXS-humjm8d6bYV6W3RC8JASX32-r6q6ulxRTsmRYCszwRXZJiSgXLGfi03_1l-x6GDY4vSJBubzM3n9Dq9_AonrUjW_9QY8-dKgKnfXHakAuRLSu0f10OOxRvR9G2A7ojx9f0VM_-q1u0XPfQ0Q_wtTZmT6-Alr7LaCfEP0uOe4ABXe2WO11P3Vhl9rOnEZ8zT473Q5wff6vsuf7u3X1a7F6enisblcLw3ExLqRmwmAmuRbGSSsscEost0YLV1LT5AkA4ohr0gk0FKIREhpnXC60dDJnV9nj7GuD3qg-puXjXgXt1QkI8UXpOHrTguIuJ9ZAaUhBObFE55aXDTjtpOTlyevb7NXH8HeCYVSbMMUura9oTmm6eMF5YrGZZWIYhgjuYyrB6hiemsNTx_DUObykuplVHgA-FCUnIpeM_QOdmphY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lazarini, Adalberto Z. N.</creator><creator>Teixeira, Marcelo C. M.</creator><creator>De S. Ribeiro, Jean M.</creator><creator>Assuncao, Edvaldo</creator><creator>Cardim, Rodrigo</creator><creator>Buzetti, Ariel S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1072-3814</orcidid><orcidid>https://orcid.org/0000-0002-9197-2475</orcidid><orcidid>https://orcid.org/0000-0002-2996-2831</orcidid><orcidid>https://orcid.org/0000-0001-8380-5573</orcidid></search><sort><creationdate>2021</creationdate><title>Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions</title><author>Lazarini, Adalberto Z. N. ; Teixeira, Marcelo C. M. ; De S. Ribeiro, Jean M. ; Assuncao, Edvaldo ; Cardim, Rodrigo ; Buzetti, Ariel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Derivatives</topic><topic>fuzzy control</topic><topic>Fuzzy Lyapunov function (FLF)</topic><topic>Fuzzy systems</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequalities (LMIs)</topic><topic>Lyapunov methods</topic><topic>Mathematical analysis</topic><topic>Nonlinear control</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Performance analysis</topic><topic>stability</topic><topic>Stabilization</topic><topic>State vectors</topic><topic>Takagi-Sugeno (TS) fuzzy systems</topic><topic>Takagi-Sugeno model</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazarini, Adalberto Z. N.</creatorcontrib><creatorcontrib>Teixeira, Marcelo C. M.</creatorcontrib><creatorcontrib>De S. Ribeiro, Jean M.</creatorcontrib><creatorcontrib>Assuncao, Edvaldo</creatorcontrib><creatorcontrib>Cardim, Rodrigo</creatorcontrib><creatorcontrib>Buzetti, Ariel S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazarini, Adalberto Z. N.</au><au>Teixeira, Marcelo C. M.</au><au>De S. Ribeiro, Jean M.</au><au>Assuncao, Edvaldo</au><au>Cardim, Rodrigo</au><au>Buzetti, Ariel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>64945</spage><epage>64957</epage><pages>64945-64957</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequalities (LMI). The FLF is given by <inline-formula> <tex-math notation="LaTeX">V(x(t)) = x(t)^{T}P(\alpha (x(t)))x(t) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">x(t) </tex-math></inline-formula> is the plant state vector, <inline-formula> <tex-math notation="LaTeX">P(\alpha (x(t))) = \alpha _{1}(x(t))P_{1} + \alpha _{2}(x(t))P_{2} + \cdots + \alpha _{r}(x(t))P_{r} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">P_{i}=P_{i}^{T} > 0 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula> is the weight related to the local model <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula> in the representation of the plant by TS fuzzy models, for <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>. When one calculates the time derivative of this <inline-formula> <tex-math notation="LaTeX">V(x(t)) </tex-math></inline-formula>, it appears the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, that is usually handled using conservative upper bounds, supposing that the bounds of the time derivative of <inline-formula> <tex-math notation="LaTeX">\alpha _{i}(x(t)) </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">i=1,2,\cdots,r </tex-math></inline-formula>, are available. The main result of this paper is a procedure to obtain optimal upper bounds for the term <inline-formula> <tex-math notation="LaTeX">x(t)^{T}\dot {P}(\alpha (x(t)))x(t) </tex-math></inline-formula>, such that they contemplate the maximum value and are always smaller than or equal to the maximum value. It is a relevant result on this subject, because these optimal upper bounds do not add any constraint. With these optimal upper bounds, a relaxed design method for stabilization of TS fuzzy models is proposed. Two numerical examples illustrate the effectiveness of this procedure.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3076030</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1072-3814</orcidid><orcidid>https://orcid.org/0000-0002-9197-2475</orcidid><orcidid>https://orcid.org/0000-0002-2996-2831</orcidid><orcidid>https://orcid.org/0000-0001-8380-5573</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.64945-64957 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2522216844 |
source | IEEE Xplore Open Access Journals |
subjects | Derivatives fuzzy control Fuzzy Lyapunov function (FLF) Fuzzy systems Liapunov functions Linear matrix inequalities linear matrix inequalities (LMIs) Lyapunov methods Mathematical analysis Nonlinear control Numerical models Optimization Performance analysis stability Stabilization State vectors Takagi-Sugeno (TS) fuzzy systems Takagi-Sugeno model Upper bound Upper bounds |
title | Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxed%20Stabilization%20Conditions%20for%20TS%20Fuzzy%20Systems%20With%20Optimal%20Upper%20Bounds%20for%20the%20Time%20Derivative%20of%20Fuzzy%20Lyapunov%20Functions&rft.jtitle=IEEE%20access&rft.au=Lazarini,%20Adalberto%20Z.%20N.&rft.date=2021&rft.volume=9&rft.spage=64945&rft.epage=64957&rft.pages=64945-64957&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3076030&rft_dat=%3Cproquest_ieee_%3E2522216844%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7a36c0374a6cf7d6de421d4dca6f92cb5de4e1f1fb603ae86b67ebfcf56a7f753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522216844&rft_id=info:pmid/&rft_ieee_id=9416573&rfr_iscdi=true |