Loading…

Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters

Discriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer vision 2021-05, Vol.129 (5), p.1359-1375
Main Authors: Xu, Tianyang, Feng, Zhenhua, Wu, Xiao-Jun, Kittler, Josef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3
cites cdi_FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3
container_end_page 1375
container_issue 5
container_start_page 1359
container_title International journal of computer vision
container_volume 129
creator Xu, Tianyang
Feng, Zhenhua
Wu, Xiao-Jun
Kittler, Josef
description Discriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in accuracy and provide a parsimonious model from the attribute perspective, we propose to gauge the relevance of multi-channel features for the purpose of channel selection. This is achieved by assessing the information conveyed by the features of each channel as a group, using an adaptive group elastic net inducing independent sparsity and temporal smoothness on the DCF solution. The robustness and stability of the learned appearance model are significantly enhanced by the proposed method as the process of channel selection performs implicit spatial regularisation. We use the augmented Lagrangian method to optimise the discriminative filters efficiently. The experimental results obtained on a number of well-known benchmarking datasets demonstrate the effectiveness and stability of the proposed method. A superior performance over the state-of-the-art trackers is achieved using less than 10 % deep feature channels.
doi_str_mv 10.1007/s11263-021-01435-1
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2522241175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660897793</galeid><sourcerecordid>A660897793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3</originalsourceid><addsrcrecordid>eNp9kU9PHCEYxknTJt3afoGeSDx5GOWFGdg5bra1mpiY-O9KmJmXlXWEFZi2fnvRMTFeDAcS-P0e_jyE_AR2CIypowTApagYh4pBLZoKPpEFNEpUULPmM1mwlrOqkS18Jd9S2jLG-JKLBRlWg9ll9xfp-tZ4jyO9xBH77IKnNkR6EbopZXrj0mRGet5tyx69iqa_c35D_7l8S3-51Ed377yZc0KMOJqXhGM3ZozpO_lizZjwx-u8R66Pf1-tT6qz8z-n69VZ1ddC5kqiZI2VwkI3yG4pOtaCWg5g1cCwBmY7XoMStZFCtqgQOtmjraHtFa87OYg9sj_n7mJ4mDBlvQ1T9OVIzRvOiw2qKdThTG3MiNp5G3J5TxkD3rs-eLSurK-kZMtWqVYU4eCdUJiM__PGTCnp08uL9yyf2T6GlCJavSt_Y-KjBqafq9JzVbpUpV-q0lAkMUupwH6D8e3eH1hP5ruVwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522241175</pqid></control><display><type>article</type><title>Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Xu, Tianyang ; Feng, Zhenhua ; Wu, Xiao-Jun ; Kittler, Josef</creator><creatorcontrib>Xu, Tianyang ; Feng, Zhenhua ; Wu, Xiao-Jun ; Kittler, Josef</creatorcontrib><description>Discriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in accuracy and provide a parsimonious model from the attribute perspective, we propose to gauge the relevance of multi-channel features for the purpose of channel selection. This is achieved by assessing the information conveyed by the features of each channel as a group, using an adaptive group elastic net inducing independent sparsity and temporal smoothness on the DCF solution. The robustness and stability of the learned appearance model are significantly enhanced by the proposed method as the process of channel selection performs implicit spatial regularisation. We use the augmented Lagrangian method to optimise the discriminative filters efficiently. The experimental results obtained on a number of well-known benchmarking datasets demonstrate the effectiveness and stability of the proposed method. A superior performance over the state-of-the-art trackers is achieved using less than 10 % deep feature channels.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-021-01435-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive filters ; Artificial Intelligence ; Computer Imaging ; Computer Science ; Image Processing and Computer Vision ; Model accuracy ; Optical tracking ; Pattern Recognition ; Pattern Recognition and Graphics ; Performance enhancement ; Regularization ; Robustness (mathematics) ; Smoothness ; Special Issue on Computer Vision in the Wild ; Stability ; Vision ; Visual discrimination</subject><ispartof>International journal of computer vision, 2021-05, Vol.129 (5), p.1359-1375</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3</citedby><cites>FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3</cites><orcidid>0000-0002-9015-3128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2522241175/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2522241175?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74865</link.rule.ids></links><search><creatorcontrib>Xu, Tianyang</creatorcontrib><creatorcontrib>Feng, Zhenhua</creatorcontrib><creatorcontrib>Wu, Xiao-Jun</creatorcontrib><creatorcontrib>Kittler, Josef</creatorcontrib><title>Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>Discriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in accuracy and provide a parsimonious model from the attribute perspective, we propose to gauge the relevance of multi-channel features for the purpose of channel selection. This is achieved by assessing the information conveyed by the features of each channel as a group, using an adaptive group elastic net inducing independent sparsity and temporal smoothness on the DCF solution. The robustness and stability of the learned appearance model are significantly enhanced by the proposed method as the process of channel selection performs implicit spatial regularisation. We use the augmented Lagrangian method to optimise the discriminative filters efficiently. The experimental results obtained on a number of well-known benchmarking datasets demonstrate the effectiveness and stability of the proposed method. A superior performance over the state-of-the-art trackers is achieved using less than 10 % deep feature channels.</description><subject>Adaptive filters</subject><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Model accuracy</subject><subject>Optical tracking</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Performance enhancement</subject><subject>Regularization</subject><subject>Robustness (mathematics)</subject><subject>Smoothness</subject><subject>Special Issue on Computer Vision in the Wild</subject><subject>Stability</subject><subject>Vision</subject><subject>Visual discrimination</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU9PHCEYxknTJt3afoGeSDx5GOWFGdg5bra1mpiY-O9KmJmXlXWEFZi2fnvRMTFeDAcS-P0e_jyE_AR2CIypowTApagYh4pBLZoKPpEFNEpUULPmM1mwlrOqkS18Jd9S2jLG-JKLBRlWg9ll9xfp-tZ4jyO9xBH77IKnNkR6EbopZXrj0mRGet5tyx69iqa_c35D_7l8S3-51Ed377yZc0KMOJqXhGM3ZozpO_lizZjwx-u8R66Pf1-tT6qz8z-n69VZ1ddC5kqiZI2VwkI3yG4pOtaCWg5g1cCwBmY7XoMStZFCtqgQOtmjraHtFa87OYg9sj_n7mJ4mDBlvQ1T9OVIzRvOiw2qKdThTG3MiNp5G3J5TxkD3rs-eLSurK-kZMtWqVYU4eCdUJiM__PGTCnp08uL9yyf2T6GlCJavSt_Y-KjBqafq9JzVbpUpV-q0lAkMUupwH6D8e3eH1hP5ruVwg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Xu, Tianyang</creator><creator>Feng, Zhenhua</creator><creator>Wu, Xiao-Jun</creator><creator>Kittler, Josef</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9015-3128</orcidid></search><sort><creationdate>20210501</creationdate><title>Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters</title><author>Xu, Tianyang ; Feng, Zhenhua ; Wu, Xiao-Jun ; Kittler, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive filters</topic><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Model accuracy</topic><topic>Optical tracking</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Performance enhancement</topic><topic>Regularization</topic><topic>Robustness (mathematics)</topic><topic>Smoothness</topic><topic>Special Issue on Computer Vision in the Wild</topic><topic>Stability</topic><topic>Vision</topic><topic>Visual discrimination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tianyang</creatorcontrib><creatorcontrib>Feng, Zhenhua</creatorcontrib><creatorcontrib>Wu, Xiao-Jun</creatorcontrib><creatorcontrib>Kittler, Josef</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>Science In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tianyang</au><au>Feng, Zhenhua</au><au>Wu, Xiao-Jun</au><au>Kittler, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>129</volume><issue>5</issue><spage>1359</spage><epage>1375</epage><pages>1359-1375</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>Discriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in accuracy and provide a parsimonious model from the attribute perspective, we propose to gauge the relevance of multi-channel features for the purpose of channel selection. This is achieved by assessing the information conveyed by the features of each channel as a group, using an adaptive group elastic net inducing independent sparsity and temporal smoothness on the DCF solution. The robustness and stability of the learned appearance model are significantly enhanced by the proposed method as the process of channel selection performs implicit spatial regularisation. We use the augmented Lagrangian method to optimise the discriminative filters efficiently. The experimental results obtained on a number of well-known benchmarking datasets demonstrate the effectiveness and stability of the proposed method. A superior performance over the state-of-the-art trackers is achieved using less than 10 % deep feature channels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-021-01435-1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9015-3128</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-5691
ispartof International journal of computer vision, 2021-05, Vol.129 (5), p.1359-1375
issn 0920-5691
1573-1405
language eng
recordid cdi_proquest_journals_2522241175
source ABI/INFORM global; Springer Link
subjects Adaptive filters
Artificial Intelligence
Computer Imaging
Computer Science
Image Processing and Computer Vision
Model accuracy
Optical tracking
Pattern Recognition
Pattern Recognition and Graphics
Performance enhancement
Regularization
Robustness (mathematics)
Smoothness
Special Issue on Computer Vision in the Wild
Stability
Vision
Visual discrimination
title Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Channel%20Selection%20for%20Robust%20Visual%20Object%20Tracking%20with%20Discriminative%20Correlation%20Filters&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Xu,%20Tianyang&rft.date=2021-05-01&rft.volume=129&rft.issue=5&rft.spage=1359&rft.epage=1375&rft.pages=1359-1375&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-021-01435-1&rft_dat=%3Cgale_proqu%3EA660897793%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522241175&rft_id=info:pmid/&rft_galeid=A660897793&rfr_iscdi=true