Loading…
Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters
Discriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in...
Saved in:
Published in: | International journal of computer vision 2021-05, Vol.129 (5), p.1359-1375 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3 |
container_end_page | 1375 |
container_issue | 5 |
container_start_page | 1359 |
container_title | International journal of computer vision |
container_volume | 129 |
creator | Xu, Tianyang Feng, Zhenhua Wu, Xiao-Jun Kittler, Josef |
description | Discriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in accuracy and provide a parsimonious model from the attribute perspective, we propose to gauge the relevance of multi-channel features for the purpose of channel selection. This is achieved by assessing the information conveyed by the features of each channel as a group, using an adaptive group elastic net inducing independent sparsity and temporal smoothness on the DCF solution. The robustness and stability of the learned appearance model are significantly enhanced by the proposed method as the process of channel selection performs implicit spatial regularisation. We use the augmented Lagrangian method to optimise the discriminative filters efficiently. The experimental results obtained on a number of well-known benchmarking datasets demonstrate the effectiveness and stability of the proposed method. A superior performance over the state-of-the-art trackers is achieved using less than
10
%
deep feature channels. |
doi_str_mv | 10.1007/s11263-021-01435-1 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2522241175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660897793</galeid><sourcerecordid>A660897793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3</originalsourceid><addsrcrecordid>eNp9kU9PHCEYxknTJt3afoGeSDx5GOWFGdg5bra1mpiY-O9KmJmXlXWEFZi2fnvRMTFeDAcS-P0e_jyE_AR2CIypowTApagYh4pBLZoKPpEFNEpUULPmM1mwlrOqkS18Jd9S2jLG-JKLBRlWg9ll9xfp-tZ4jyO9xBH77IKnNkR6EbopZXrj0mRGet5tyx69iqa_c35D_7l8S3-51Ed377yZc0KMOJqXhGM3ZozpO_lizZjwx-u8R66Pf1-tT6qz8z-n69VZ1ddC5kqiZI2VwkI3yG4pOtaCWg5g1cCwBmY7XoMStZFCtqgQOtmjraHtFa87OYg9sj_n7mJ4mDBlvQ1T9OVIzRvOiw2qKdThTG3MiNp5G3J5TxkD3rs-eLSurK-kZMtWqVYU4eCdUJiM__PGTCnp08uL9yyf2T6GlCJavSt_Y-KjBqafq9JzVbpUpV-q0lAkMUupwH6D8e3eH1hP5ruVwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522241175</pqid></control><display><type>article</type><title>Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Xu, Tianyang ; Feng, Zhenhua ; Wu, Xiao-Jun ; Kittler, Josef</creator><creatorcontrib>Xu, Tianyang ; Feng, Zhenhua ; Wu, Xiao-Jun ; Kittler, Josef</creatorcontrib><description>Discriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in accuracy and provide a parsimonious model from the attribute perspective, we propose to gauge the relevance of multi-channel features for the purpose of channel selection. This is achieved by assessing the information conveyed by the features of each channel as a group, using an adaptive group elastic net inducing independent sparsity and temporal smoothness on the DCF solution. The robustness and stability of the learned appearance model are significantly enhanced by the proposed method as the process of channel selection performs implicit spatial regularisation. We use the augmented Lagrangian method to optimise the discriminative filters efficiently. The experimental results obtained on a number of well-known benchmarking datasets demonstrate the effectiveness and stability of the proposed method. A superior performance over the state-of-the-art trackers is achieved using less than
10
%
deep feature channels.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-021-01435-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive filters ; Artificial Intelligence ; Computer Imaging ; Computer Science ; Image Processing and Computer Vision ; Model accuracy ; Optical tracking ; Pattern Recognition ; Pattern Recognition and Graphics ; Performance enhancement ; Regularization ; Robustness (mathematics) ; Smoothness ; Special Issue on Computer Vision in the Wild ; Stability ; Vision ; Visual discrimination</subject><ispartof>International journal of computer vision, 2021-05, Vol.129 (5), p.1359-1375</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3</citedby><cites>FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3</cites><orcidid>0000-0002-9015-3128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2522241175/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2522241175?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74865</link.rule.ids></links><search><creatorcontrib>Xu, Tianyang</creatorcontrib><creatorcontrib>Feng, Zhenhua</creatorcontrib><creatorcontrib>Wu, Xiao-Jun</creatorcontrib><creatorcontrib>Kittler, Josef</creatorcontrib><title>Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>Discriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in accuracy and provide a parsimonious model from the attribute perspective, we propose to gauge the relevance of multi-channel features for the purpose of channel selection. This is achieved by assessing the information conveyed by the features of each channel as a group, using an adaptive group elastic net inducing independent sparsity and temporal smoothness on the DCF solution. The robustness and stability of the learned appearance model are significantly enhanced by the proposed method as the process of channel selection performs implicit spatial regularisation. We use the augmented Lagrangian method to optimise the discriminative filters efficiently. The experimental results obtained on a number of well-known benchmarking datasets demonstrate the effectiveness and stability of the proposed method. A superior performance over the state-of-the-art trackers is achieved using less than
10
%
deep feature channels.</description><subject>Adaptive filters</subject><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Model accuracy</subject><subject>Optical tracking</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Performance enhancement</subject><subject>Regularization</subject><subject>Robustness (mathematics)</subject><subject>Smoothness</subject><subject>Special Issue on Computer Vision in the Wild</subject><subject>Stability</subject><subject>Vision</subject><subject>Visual discrimination</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU9PHCEYxknTJt3afoGeSDx5GOWFGdg5bra1mpiY-O9KmJmXlXWEFZi2fnvRMTFeDAcS-P0e_jyE_AR2CIypowTApagYh4pBLZoKPpEFNEpUULPmM1mwlrOqkS18Jd9S2jLG-JKLBRlWg9ll9xfp-tZ4jyO9xBH77IKnNkR6EbopZXrj0mRGet5tyx69iqa_c35D_7l8S3-51Ed377yZc0KMOJqXhGM3ZozpO_lizZjwx-u8R66Pf1-tT6qz8z-n69VZ1ddC5kqiZI2VwkI3yG4pOtaCWg5g1cCwBmY7XoMStZFCtqgQOtmjraHtFa87OYg9sj_n7mJ4mDBlvQ1T9OVIzRvOiw2qKdThTG3MiNp5G3J5TxkD3rs-eLSurK-kZMtWqVYU4eCdUJiM__PGTCnp08uL9yyf2T6GlCJavSt_Y-KjBqafq9JzVbpUpV-q0lAkMUupwH6D8e3eH1hP5ruVwg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Xu, Tianyang</creator><creator>Feng, Zhenhua</creator><creator>Wu, Xiao-Jun</creator><creator>Kittler, Josef</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9015-3128</orcidid></search><sort><creationdate>20210501</creationdate><title>Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters</title><author>Xu, Tianyang ; Feng, Zhenhua ; Wu, Xiao-Jun ; Kittler, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive filters</topic><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Model accuracy</topic><topic>Optical tracking</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Performance enhancement</topic><topic>Regularization</topic><topic>Robustness (mathematics)</topic><topic>Smoothness</topic><topic>Special Issue on Computer Vision in the Wild</topic><topic>Stability</topic><topic>Vision</topic><topic>Visual discrimination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tianyang</creatorcontrib><creatorcontrib>Feng, Zhenhua</creatorcontrib><creatorcontrib>Wu, Xiao-Jun</creatorcontrib><creatorcontrib>Kittler, Josef</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>Science In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tianyang</au><au>Feng, Zhenhua</au><au>Wu, Xiao-Jun</au><au>Kittler, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>129</volume><issue>5</issue><spage>1359</spage><epage>1375</epage><pages>1359-1375</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>Discriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in accuracy and provide a parsimonious model from the attribute perspective, we propose to gauge the relevance of multi-channel features for the purpose of channel selection. This is achieved by assessing the information conveyed by the features of each channel as a group, using an adaptive group elastic net inducing independent sparsity and temporal smoothness on the DCF solution. The robustness and stability of the learned appearance model are significantly enhanced by the proposed method as the process of channel selection performs implicit spatial regularisation. We use the augmented Lagrangian method to optimise the discriminative filters efficiently. The experimental results obtained on a number of well-known benchmarking datasets demonstrate the effectiveness and stability of the proposed method. A superior performance over the state-of-the-art trackers is achieved using less than
10
%
deep feature channels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-021-01435-1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9015-3128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2021-05, Vol.129 (5), p.1359-1375 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_proquest_journals_2522241175 |
source | ABI/INFORM global; Springer Link |
subjects | Adaptive filters Artificial Intelligence Computer Imaging Computer Science Image Processing and Computer Vision Model accuracy Optical tracking Pattern Recognition Pattern Recognition and Graphics Performance enhancement Regularization Robustness (mathematics) Smoothness Special Issue on Computer Vision in the Wild Stability Vision Visual discrimination |
title | Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Channel%20Selection%20for%20Robust%20Visual%20Object%20Tracking%20with%20Discriminative%20Correlation%20Filters&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Xu,%20Tianyang&rft.date=2021-05-01&rft.volume=129&rft.issue=5&rft.spage=1359&rft.epage=1375&rft.pages=1359-1375&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-021-01435-1&rft_dat=%3Cgale_proqu%3EA660897793%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-6e605f63f1bd6b83b09178d1f7d0e410fb241734a6369e7e1b6cef419c724b6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522241175&rft_id=info:pmid/&rft_galeid=A660897793&rfr_iscdi=true |