Loading…

Surface growth, coagulation and oxidation of soot by a monodisperse population balance model

A monodisperse population balance model (MPBM) is developed here that capitalizes on the rapid attainment of the self-preserving size distribution and asymptotic fractal-like structure of agglomerates by coagulation to simulate their evolution with only three equations. Total agglomerate carbon mola...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame 2021-05, Vol.227, p.456-463
Main Authors: Kholghy, M. Reza, Kelesidis, Georgios A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203
cites cdi_FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203
container_end_page 463
container_issue
container_start_page 456
container_title Combustion and flame
container_volume 227
creator Kholghy, M. Reza
Kelesidis, Georgios A.
description A monodisperse population balance model (MPBM) is developed here that capitalizes on the rapid attainment of the self-preserving size distribution and asymptotic fractal-like structure of agglomerates by coagulation to simulate their evolution with only three equations. Total agglomerate carbon molar, C, number (N) and area (A) concentrations are tracked. The model accounts for the polydispersity of agglomerates by enhancing their collision frequency by that of their self-preserving size distribution based on the radius of gyration in the free molecular regime. Scaling laws from detailed discrete element modeling (DEM) simulations are used to describe the fractal-like morphology of the agglomerates. The MPBM predicts the evolution of soot fv, N and average mobility and primary particle diameters during surface growth and agglomeration in laminar premixed ethylene flames as well as soot oxidation in a tube reactor within 30% of detailed DEM, sectional population balance simulations and measurements. Thus, when self-preserving size distribution and asymptotic structure of agglomerates are attained, this simple MPBM has unprecedented accuracy and can be readily interfaced with computational fluid dynamic (CFD) to model soot formation in combustion devices or process design and optimization for the synthesis of carbonaceous agglomerate nanoparticles.
doi_str_mv 10.1016/j.combustflame.2021.01.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522426192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218021000183</els_id><sourcerecordid>2522426192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203</originalsourceid><addsrcrecordid>eNqNUMtKxDAUDaLgOPoPQbe23qRt2rqT8QkDLtSdENI8xgxtU5NWnb-3pQouhQuXezkPzkHolEBMgLCLbSxdUw2hN7VodEyBkhimgT20IFnGIlpSso8WML4iSgo4REchbAEgT5NkgV6fBm-E1Hjj3Wf_do6lE5uhFr11LRatwu7LqvlyBgfnelztsMCNa52yodM-aNy57pdSiVq0o1zjlK6P0YERddAnP3uJXm5vnlf30frx7mF1tY5kktE-YoSVCSspyyWrcigZFcQUUqtSiaTQJAVjilQXRZqrLAdBSUqrnI1wAlVOIVmis1m38-590KHnWzf4drTkNKM0pYyUdERdzijpXQheG9552wi_4wT41Cbf8r9t8qlNDtNMFtczWY85Pqz2PEirx6TKei17rpz9j8w3uFaEtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522426192</pqid></control><display><type>article</type><title>Surface growth, coagulation and oxidation of soot by a monodisperse population balance model</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kholghy, M. Reza ; Kelesidis, Georgios A.</creator><creatorcontrib>Kholghy, M. Reza ; Kelesidis, Georgios A.</creatorcontrib><description>A monodisperse population balance model (MPBM) is developed here that capitalizes on the rapid attainment of the self-preserving size distribution and asymptotic fractal-like structure of agglomerates by coagulation to simulate their evolution with only three equations. Total agglomerate carbon molar, C, number (N) and area (A) concentrations are tracked. The model accounts for the polydispersity of agglomerates by enhancing their collision frequency by that of their self-preserving size distribution based on the radius of gyration in the free molecular regime. Scaling laws from detailed discrete element modeling (DEM) simulations are used to describe the fractal-like morphology of the agglomerates. The MPBM predicts the evolution of soot fv, N and average mobility and primary particle diameters during surface growth and agglomeration in laminar premixed ethylene flames as well as soot oxidation in a tube reactor within 30% of detailed DEM, sectional population balance simulations and measurements. Thus, when self-preserving size distribution and asymptotic structure of agglomerates are attained, this simple MPBM has unprecedented accuracy and can be readily interfaced with computational fluid dynamic (CFD) to model soot formation in combustion devices or process design and optimization for the synthesis of carbonaceous agglomerate nanoparticles.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2021.01.010</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Agglomerates ; Agglomeration ; Asymptotic methods ; Asymptotic properties ; Coagulation ; Computational fluid dynamics ; Design optimization ; Diameters ; Discrete element method ; Discrete element modeling ; Evolution ; Fractals ; Mathematical models ; Morphology ; Nanoparticles ; Oxidation ; Particle size distribution ; Polydispersity ; Population balance modeling ; Population balance models ; Scaling laws ; Self-preserving size distribution ; Simulation ; Soot</subject><ispartof>Combustion and flame, 2021-05, Vol.227, p.456-463</ispartof><rights>2021</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203</citedby><cites>FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203</cites><orcidid>0000-0002-0554-1143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kholghy, M. Reza</creatorcontrib><creatorcontrib>Kelesidis, Georgios A.</creatorcontrib><title>Surface growth, coagulation and oxidation of soot by a monodisperse population balance model</title><title>Combustion and flame</title><description>A monodisperse population balance model (MPBM) is developed here that capitalizes on the rapid attainment of the self-preserving size distribution and asymptotic fractal-like structure of agglomerates by coagulation to simulate their evolution with only three equations. Total agglomerate carbon molar, C, number (N) and area (A) concentrations are tracked. The model accounts for the polydispersity of agglomerates by enhancing their collision frequency by that of their self-preserving size distribution based on the radius of gyration in the free molecular regime. Scaling laws from detailed discrete element modeling (DEM) simulations are used to describe the fractal-like morphology of the agglomerates. The MPBM predicts the evolution of soot fv, N and average mobility and primary particle diameters during surface growth and agglomeration in laminar premixed ethylene flames as well as soot oxidation in a tube reactor within 30% of detailed DEM, sectional population balance simulations and measurements. Thus, when self-preserving size distribution and asymptotic structure of agglomerates are attained, this simple MPBM has unprecedented accuracy and can be readily interfaced with computational fluid dynamic (CFD) to model soot formation in combustion devices or process design and optimization for the synthesis of carbonaceous agglomerate nanoparticles.</description><subject>Agglomerates</subject><subject>Agglomeration</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Coagulation</subject><subject>Computational fluid dynamics</subject><subject>Design optimization</subject><subject>Diameters</subject><subject>Discrete element method</subject><subject>Discrete element modeling</subject><subject>Evolution</subject><subject>Fractals</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Particle size distribution</subject><subject>Polydispersity</subject><subject>Population balance modeling</subject><subject>Population balance models</subject><subject>Scaling laws</subject><subject>Self-preserving size distribution</subject><subject>Simulation</subject><subject>Soot</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUMtKxDAUDaLgOPoPQbe23qRt2rqT8QkDLtSdENI8xgxtU5NWnb-3pQouhQuXezkPzkHolEBMgLCLbSxdUw2hN7VodEyBkhimgT20IFnGIlpSso8WML4iSgo4REchbAEgT5NkgV6fBm-E1Hjj3Wf_do6lE5uhFr11LRatwu7LqvlyBgfnelztsMCNa52yodM-aNy57pdSiVq0o1zjlK6P0YERddAnP3uJXm5vnlf30frx7mF1tY5kktE-YoSVCSspyyWrcigZFcQUUqtSiaTQJAVjilQXRZqrLAdBSUqrnI1wAlVOIVmis1m38-590KHnWzf4drTkNKM0pYyUdERdzijpXQheG9552wi_4wT41Cbf8r9t8qlNDtNMFtczWY85Pqz2PEirx6TKei17rpz9j8w3uFaEtA</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Kholghy, M. Reza</creator><creator>Kelesidis, Georgios A.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0554-1143</orcidid></search><sort><creationdate>202105</creationdate><title>Surface growth, coagulation and oxidation of soot by a monodisperse population balance model</title><author>Kholghy, M. Reza ; Kelesidis, Georgios A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomerates</topic><topic>Agglomeration</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Coagulation</topic><topic>Computational fluid dynamics</topic><topic>Design optimization</topic><topic>Diameters</topic><topic>Discrete element method</topic><topic>Discrete element modeling</topic><topic>Evolution</topic><topic>Fractals</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Particle size distribution</topic><topic>Polydispersity</topic><topic>Population balance modeling</topic><topic>Population balance models</topic><topic>Scaling laws</topic><topic>Self-preserving size distribution</topic><topic>Simulation</topic><topic>Soot</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kholghy, M. Reza</creatorcontrib><creatorcontrib>Kelesidis, Georgios A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kholghy, M. Reza</au><au>Kelesidis, Georgios A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface growth, coagulation and oxidation of soot by a monodisperse population balance model</atitle><jtitle>Combustion and flame</jtitle><date>2021-05</date><risdate>2021</risdate><volume>227</volume><spage>456</spage><epage>463</epage><pages>456-463</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>A monodisperse population balance model (MPBM) is developed here that capitalizes on the rapid attainment of the self-preserving size distribution and asymptotic fractal-like structure of agglomerates by coagulation to simulate their evolution with only three equations. Total agglomerate carbon molar, C, number (N) and area (A) concentrations are tracked. The model accounts for the polydispersity of agglomerates by enhancing their collision frequency by that of their self-preserving size distribution based on the radius of gyration in the free molecular regime. Scaling laws from detailed discrete element modeling (DEM) simulations are used to describe the fractal-like morphology of the agglomerates. The MPBM predicts the evolution of soot fv, N and average mobility and primary particle diameters during surface growth and agglomeration in laminar premixed ethylene flames as well as soot oxidation in a tube reactor within 30% of detailed DEM, sectional population balance simulations and measurements. Thus, when self-preserving size distribution and asymptotic structure of agglomerates are attained, this simple MPBM has unprecedented accuracy and can be readily interfaced with computational fluid dynamic (CFD) to model soot formation in combustion devices or process design and optimization for the synthesis of carbonaceous agglomerate nanoparticles.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2021.01.010</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0554-1143</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2021-05, Vol.227, p.456-463
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_2522426192
source ScienceDirect Freedom Collection 2022-2024
subjects Agglomerates
Agglomeration
Asymptotic methods
Asymptotic properties
Coagulation
Computational fluid dynamics
Design optimization
Diameters
Discrete element method
Discrete element modeling
Evolution
Fractals
Mathematical models
Morphology
Nanoparticles
Oxidation
Particle size distribution
Polydispersity
Population balance modeling
Population balance models
Scaling laws
Self-preserving size distribution
Simulation
Soot
title Surface growth, coagulation and oxidation of soot by a monodisperse population balance model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20growth,%20coagulation%20and%20oxidation%20of%20soot%20by%20a%20monodisperse%20population%20balance%20model&rft.jtitle=Combustion%20and%20flame&rft.au=Kholghy,%20M.%20Reza&rft.date=2021-05&rft.volume=227&rft.spage=456&rft.epage=463&rft.pages=456-463&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2021.01.010&rft_dat=%3Cproquest_cross%3E2522426192%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522426192&rft_id=info:pmid/&rfr_iscdi=true