Loading…
Surface growth, coagulation and oxidation of soot by a monodisperse population balance model
A monodisperse population balance model (MPBM) is developed here that capitalizes on the rapid attainment of the self-preserving size distribution and asymptotic fractal-like structure of agglomerates by coagulation to simulate their evolution with only three equations. Total agglomerate carbon mola...
Saved in:
Published in: | Combustion and flame 2021-05, Vol.227, p.456-463 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203 |
container_end_page | 463 |
container_issue | |
container_start_page | 456 |
container_title | Combustion and flame |
container_volume | 227 |
creator | Kholghy, M. Reza Kelesidis, Georgios A. |
description | A monodisperse population balance model (MPBM) is developed here that capitalizes on the rapid attainment of the self-preserving size distribution and asymptotic fractal-like structure of agglomerates by coagulation to simulate their evolution with only three equations. Total agglomerate carbon molar, C, number (N) and area (A) concentrations are tracked. The model accounts for the polydispersity of agglomerates by enhancing their collision frequency by that of their self-preserving size distribution based on the radius of gyration in the free molecular regime. Scaling laws from detailed discrete element modeling (DEM) simulations are used to describe the fractal-like morphology of the agglomerates. The MPBM predicts the evolution of soot fv, N and average mobility and primary particle diameters during surface growth and agglomeration in laminar premixed ethylene flames as well as soot oxidation in a tube reactor within 30% of detailed DEM, sectional population balance simulations and measurements. Thus, when self-preserving size distribution and asymptotic structure of agglomerates are attained, this simple MPBM has unprecedented accuracy and can be readily interfaced with computational fluid dynamic (CFD) to model soot formation in combustion devices or process design and optimization for the synthesis of carbonaceous agglomerate nanoparticles. |
doi_str_mv | 10.1016/j.combustflame.2021.01.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522426192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218021000183</els_id><sourcerecordid>2522426192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203</originalsourceid><addsrcrecordid>eNqNUMtKxDAUDaLgOPoPQbe23qRt2rqT8QkDLtSdENI8xgxtU5NWnb-3pQouhQuXezkPzkHolEBMgLCLbSxdUw2hN7VodEyBkhimgT20IFnGIlpSso8WML4iSgo4REchbAEgT5NkgV6fBm-E1Hjj3Wf_do6lE5uhFr11LRatwu7LqvlyBgfnelztsMCNa52yodM-aNy57pdSiVq0o1zjlK6P0YERddAnP3uJXm5vnlf30frx7mF1tY5kktE-YoSVCSspyyWrcigZFcQUUqtSiaTQJAVjilQXRZqrLAdBSUqrnI1wAlVOIVmis1m38-590KHnWzf4drTkNKM0pYyUdERdzijpXQheG9552wi_4wT41Cbf8r9t8qlNDtNMFtczWY85Pqz2PEirx6TKei17rpz9j8w3uFaEtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522426192</pqid></control><display><type>article</type><title>Surface growth, coagulation and oxidation of soot by a monodisperse population balance model</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kholghy, M. Reza ; Kelesidis, Georgios A.</creator><creatorcontrib>Kholghy, M. Reza ; Kelesidis, Georgios A.</creatorcontrib><description>A monodisperse population balance model (MPBM) is developed here that capitalizes on the rapid attainment of the self-preserving size distribution and asymptotic fractal-like structure of agglomerates by coagulation to simulate their evolution with only three equations. Total agglomerate carbon molar, C, number (N) and area (A) concentrations are tracked. The model accounts for the polydispersity of agglomerates by enhancing their collision frequency by that of their self-preserving size distribution based on the radius of gyration in the free molecular regime. Scaling laws from detailed discrete element modeling (DEM) simulations are used to describe the fractal-like morphology of the agglomerates. The MPBM predicts the evolution of soot fv, N and average mobility and primary particle diameters during surface growth and agglomeration in laminar premixed ethylene flames as well as soot oxidation in a tube reactor within 30% of detailed DEM, sectional population balance simulations and measurements. Thus, when self-preserving size distribution and asymptotic structure of agglomerates are attained, this simple MPBM has unprecedented accuracy and can be readily interfaced with computational fluid dynamic (CFD) to model soot formation in combustion devices or process design and optimization for the synthesis of carbonaceous agglomerate nanoparticles.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2021.01.010</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Agglomerates ; Agglomeration ; Asymptotic methods ; Asymptotic properties ; Coagulation ; Computational fluid dynamics ; Design optimization ; Diameters ; Discrete element method ; Discrete element modeling ; Evolution ; Fractals ; Mathematical models ; Morphology ; Nanoparticles ; Oxidation ; Particle size distribution ; Polydispersity ; Population balance modeling ; Population balance models ; Scaling laws ; Self-preserving size distribution ; Simulation ; Soot</subject><ispartof>Combustion and flame, 2021-05, Vol.227, p.456-463</ispartof><rights>2021</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203</citedby><cites>FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203</cites><orcidid>0000-0002-0554-1143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kholghy, M. Reza</creatorcontrib><creatorcontrib>Kelesidis, Georgios A.</creatorcontrib><title>Surface growth, coagulation and oxidation of soot by a monodisperse population balance model</title><title>Combustion and flame</title><description>A monodisperse population balance model (MPBM) is developed here that capitalizes on the rapid attainment of the self-preserving size distribution and asymptotic fractal-like structure of agglomerates by coagulation to simulate their evolution with only three equations. Total agglomerate carbon molar, C, number (N) and area (A) concentrations are tracked. The model accounts for the polydispersity of agglomerates by enhancing their collision frequency by that of their self-preserving size distribution based on the radius of gyration in the free molecular regime. Scaling laws from detailed discrete element modeling (DEM) simulations are used to describe the fractal-like morphology of the agglomerates. The MPBM predicts the evolution of soot fv, N and average mobility and primary particle diameters during surface growth and agglomeration in laminar premixed ethylene flames as well as soot oxidation in a tube reactor within 30% of detailed DEM, sectional population balance simulations and measurements. Thus, when self-preserving size distribution and asymptotic structure of agglomerates are attained, this simple MPBM has unprecedented accuracy and can be readily interfaced with computational fluid dynamic (CFD) to model soot formation in combustion devices or process design and optimization for the synthesis of carbonaceous agglomerate nanoparticles.</description><subject>Agglomerates</subject><subject>Agglomeration</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Coagulation</subject><subject>Computational fluid dynamics</subject><subject>Design optimization</subject><subject>Diameters</subject><subject>Discrete element method</subject><subject>Discrete element modeling</subject><subject>Evolution</subject><subject>Fractals</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Particle size distribution</subject><subject>Polydispersity</subject><subject>Population balance modeling</subject><subject>Population balance models</subject><subject>Scaling laws</subject><subject>Self-preserving size distribution</subject><subject>Simulation</subject><subject>Soot</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUMtKxDAUDaLgOPoPQbe23qRt2rqT8QkDLtSdENI8xgxtU5NWnb-3pQouhQuXezkPzkHolEBMgLCLbSxdUw2hN7VodEyBkhimgT20IFnGIlpSso8WML4iSgo4REchbAEgT5NkgV6fBm-E1Hjj3Wf_do6lE5uhFr11LRatwu7LqvlyBgfnelztsMCNa52yodM-aNy57pdSiVq0o1zjlK6P0YERddAnP3uJXm5vnlf30frx7mF1tY5kktE-YoSVCSspyyWrcigZFcQUUqtSiaTQJAVjilQXRZqrLAdBSUqrnI1wAlVOIVmis1m38-590KHnWzf4drTkNKM0pYyUdERdzijpXQheG9552wi_4wT41Cbf8r9t8qlNDtNMFtczWY85Pqz2PEirx6TKei17rpz9j8w3uFaEtA</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Kholghy, M. Reza</creator><creator>Kelesidis, Georgios A.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0554-1143</orcidid></search><sort><creationdate>202105</creationdate><title>Surface growth, coagulation and oxidation of soot by a monodisperse population balance model</title><author>Kholghy, M. Reza ; Kelesidis, Georgios A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomerates</topic><topic>Agglomeration</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Coagulation</topic><topic>Computational fluid dynamics</topic><topic>Design optimization</topic><topic>Diameters</topic><topic>Discrete element method</topic><topic>Discrete element modeling</topic><topic>Evolution</topic><topic>Fractals</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Particle size distribution</topic><topic>Polydispersity</topic><topic>Population balance modeling</topic><topic>Population balance models</topic><topic>Scaling laws</topic><topic>Self-preserving size distribution</topic><topic>Simulation</topic><topic>Soot</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kholghy, M. Reza</creatorcontrib><creatorcontrib>Kelesidis, Georgios A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kholghy, M. Reza</au><au>Kelesidis, Georgios A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface growth, coagulation and oxidation of soot by a monodisperse population balance model</atitle><jtitle>Combustion and flame</jtitle><date>2021-05</date><risdate>2021</risdate><volume>227</volume><spage>456</spage><epage>463</epage><pages>456-463</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>A monodisperse population balance model (MPBM) is developed here that capitalizes on the rapid attainment of the self-preserving size distribution and asymptotic fractal-like structure of agglomerates by coagulation to simulate their evolution with only three equations. Total agglomerate carbon molar, C, number (N) and area (A) concentrations are tracked. The model accounts for the polydispersity of agglomerates by enhancing their collision frequency by that of their self-preserving size distribution based on the radius of gyration in the free molecular regime. Scaling laws from detailed discrete element modeling (DEM) simulations are used to describe the fractal-like morphology of the agglomerates. The MPBM predicts the evolution of soot fv, N and average mobility and primary particle diameters during surface growth and agglomeration in laminar premixed ethylene flames as well as soot oxidation in a tube reactor within 30% of detailed DEM, sectional population balance simulations and measurements. Thus, when self-preserving size distribution and asymptotic structure of agglomerates are attained, this simple MPBM has unprecedented accuracy and can be readily interfaced with computational fluid dynamic (CFD) to model soot formation in combustion devices or process design and optimization for the synthesis of carbonaceous agglomerate nanoparticles.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2021.01.010</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0554-1143</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2021-05, Vol.227, p.456-463 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_journals_2522426192 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Agglomerates Agglomeration Asymptotic methods Asymptotic properties Coagulation Computational fluid dynamics Design optimization Diameters Discrete element method Discrete element modeling Evolution Fractals Mathematical models Morphology Nanoparticles Oxidation Particle size distribution Polydispersity Population balance modeling Population balance models Scaling laws Self-preserving size distribution Simulation Soot |
title | Surface growth, coagulation and oxidation of soot by a monodisperse population balance model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20growth,%20coagulation%20and%20oxidation%20of%20soot%20by%20a%20monodisperse%20population%20balance%20model&rft.jtitle=Combustion%20and%20flame&rft.au=Kholghy,%20M.%20Reza&rft.date=2021-05&rft.volume=227&rft.spage=456&rft.epage=463&rft.pages=456-463&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2021.01.010&rft_dat=%3Cproquest_cross%3E2522426192%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-6169369267c6b70962a1f8ced9da38e140ff84e8847d570a2142b7667c10b7203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522426192&rft_id=info:pmid/&rfr_iscdi=true |