Loading…

Undoped tin dioxide transparent electrodes for efficient and cost-effective indoor organic photovoltaics (SnO2electrode for indoor organic photovoltaics)

Indoor organic photovoltaics (OPVs) are currently being investigated for small-scale energy generation from artificial light sources to power small electronic devices. Despite recent progress in increasing the power conversion efficiency (PCE) of indoor OPVs, the widespread use of expensive indium t...

Full description

Saved in:
Bibliographic Details
Published in:NPG Asia materials 2021, Vol.13 (1), Article 43
Main Authors: Lee, Jung-Hoon, You, Young-Jun, Saeed, Muhammad Ahsan, Kim, Sang Hyeon, Choi, Su-Hwan, Kim, Sungmin, Lee, Sae Youn, Park, Jin-Seong, Shim, Jae Won
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-7681fecb575e153d6268ff7dcdb6a771db138d1f9b1a7da969ba633347517d43
cites cdi_FETCH-LOGICAL-c402t-7681fecb575e153d6268ff7dcdb6a771db138d1f9b1a7da969ba633347517d43
container_end_page
container_issue 1
container_start_page
container_title NPG Asia materials
container_volume 13
creator Lee, Jung-Hoon
You, Young-Jun
Saeed, Muhammad Ahsan
Kim, Sang Hyeon
Choi, Su-Hwan
Kim, Sungmin
Lee, Sae Youn
Park, Jin-Seong
Shim, Jae Won
description Indoor organic photovoltaics (OPVs) are currently being investigated for small-scale energy generation from artificial light sources to power small electronic devices. Despite recent progress in increasing the power conversion efficiency (PCE) of indoor OPVs, the widespread use of expensive indium tin oxide (ITO) as a transparent conducting electrode (TCE) leads to long energy payback times. This study provides a novel and comprehensive description of low-temperature atomic layer deposition (ALD)-processed indium-free tin dioxide (SnO 2 ) films as inexpensive and efficient TCEs for indoor OPVs. These highly conformal and defect-free ALD-fabricated SnO 2 films are applied to a poly(3-hexylthiophene):indene-C 60 bisadduct-based OPV system. Under 1 sun illumination, an OPV with an SnO 2 TCE exhibits limited operational capacity because of the high sheet resistance (~98 Ω sq −1 ) of the SnO 2 layers. However, under a light-emitting diode (LED) lamp with a luminance of 1000 lx, the series resistance, which is related to the sheet resistance, has a marginal effect on the performance of the indoor OPV system, showing a PCE of 14.6 ± 0.3%. A reference OPV with an ITO TCE has a slightly lower PCE of 13.3 ± 0.8% under the same LED conditions. These results suggest that SnO 2 TCEs can be efficient and cost-effective replacements for ITO TCEs in indoor OPV systems. Indium-free un-doped tin dioxide (SnO 2 ) serves as a transparent conducting electrode for indoor organic photovoltaics (OPVs). SnO 2 OPV systems demonstrate superior indoor performance compared with indium tin oxide (ITO)-based systems. SnO 2 -based OPV systems shows 14.6% efficiency under 1000 lx of LED illumination. Low-cost SnO 2 can be a promising substitute for expensive ITOs in indoor OPV systems.
doi_str_mv 10.1038/s41427-021-00310-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522497443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522497443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7681fecb575e153d6268ff7dcdb6a771db138d1f9b1a7da969ba633347517d43</originalsourceid><addsrcrecordid>eNp9kbtOwzAUhiMEElXpCzBZYoEh4FviZEQVN6lSB8psOb4UV8UOtlvBo_C2uA0qW6djHX__d4a_KC4RvEWQNHeRIopZCTEqISQIlvikGKGmoSWFFTs9vGl7XkxiXEEIUV3TpqKj4ufNKd9rBZJ1QFn_ZZUGKQgXexG0S0CvtUzBKx2B8QFoY6y0uw_hFJA-pjKvMmK3GtjsyowPS-GsBP27T37r10lYGcH1q5vjg20vO8bfXBRnRqyjnvzNcbF4fFhMn8vZ_Ollej8rJYU4laxuUL7fVazSqCKqxnVjDFNSdbVgDKkOkUYh03ZIMCXauu1ETQihrEJMUTIurgZtH_znRsfEV34TXL7IcYUxbRmlJFN4oGTwMQZteB_shwjfHEG-K4EPJfBcAt-XwHEOkSEUM-yWOvyrj6R-AdSzjbk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522497443</pqid></control><display><type>article</type><title>Undoped tin dioxide transparent electrodes for efficient and cost-effective indoor organic photovoltaics (SnO2electrode for indoor organic photovoltaics)</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Jung-Hoon ; You, Young-Jun ; Saeed, Muhammad Ahsan ; Kim, Sang Hyeon ; Choi, Su-Hwan ; Kim, Sungmin ; Lee, Sae Youn ; Park, Jin-Seong ; Shim, Jae Won</creator><creatorcontrib>Lee, Jung-Hoon ; You, Young-Jun ; Saeed, Muhammad Ahsan ; Kim, Sang Hyeon ; Choi, Su-Hwan ; Kim, Sungmin ; Lee, Sae Youn ; Park, Jin-Seong ; Shim, Jae Won</creatorcontrib><description>Indoor organic photovoltaics (OPVs) are currently being investigated for small-scale energy generation from artificial light sources to power small electronic devices. Despite recent progress in increasing the power conversion efficiency (PCE) of indoor OPVs, the widespread use of expensive indium tin oxide (ITO) as a transparent conducting electrode (TCE) leads to long energy payback times. This study provides a novel and comprehensive description of low-temperature atomic layer deposition (ALD)-processed indium-free tin dioxide (SnO 2 ) films as inexpensive and efficient TCEs for indoor OPVs. These highly conformal and defect-free ALD-fabricated SnO 2 films are applied to a poly(3-hexylthiophene):indene-C 60 bisadduct-based OPV system. Under 1 sun illumination, an OPV with an SnO 2 TCE exhibits limited operational capacity because of the high sheet resistance (~98 Ω sq −1 ) of the SnO 2 layers. However, under a light-emitting diode (LED) lamp with a luminance of 1000 lx, the series resistance, which is related to the sheet resistance, has a marginal effect on the performance of the indoor OPV system, showing a PCE of 14.6 ± 0.3%. A reference OPV with an ITO TCE has a slightly lower PCE of 13.3 ± 0.8% under the same LED conditions. These results suggest that SnO 2 TCEs can be efficient and cost-effective replacements for ITO TCEs in indoor OPV systems. Indium-free un-doped tin dioxide (SnO 2 ) serves as a transparent conducting electrode for indoor organic photovoltaics (OPVs). SnO 2 OPV systems demonstrate superior indoor performance compared with indium tin oxide (ITO)-based systems. SnO 2 -based OPV systems shows 14.6% efficiency under 1000 lx of LED illumination. Low-cost SnO 2 can be a promising substitute for expensive ITOs in indoor OPV systems.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-021-00310-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/122 ; 639/166/987 ; 639/766/1130 ; Atomic layer epitaxy ; Biomaterials ; Chemistry and Materials Science ; Dioxides ; Electrical resistivity ; Electronic devices ; Energy conversion efficiency ; Energy Systems ; Illumination ; Indene ; Indium tin oxides ; Light emitting diodes ; Light sources ; Low temperature ; Luminance ; Materials Science ; Optical and Electronic Materials ; Photovoltaic cells ; Structural Materials ; Surface and Interface Science ; System effectiveness ; Thin Films ; Tin ; Tin dioxide</subject><ispartof>NPG Asia materials, 2021, Vol.13 (1), Article 43</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-7681fecb575e153d6268ff7dcdb6a771db138d1f9b1a7da969ba633347517d43</citedby><cites>FETCH-LOGICAL-c402t-7681fecb575e153d6268ff7dcdb6a771db138d1f9b1a7da969ba633347517d43</cites><orcidid>0000-0002-9070-5666 ; 0000-0001-8387-160X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2522497443/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2522497443?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Lee, Jung-Hoon</creatorcontrib><creatorcontrib>You, Young-Jun</creatorcontrib><creatorcontrib>Saeed, Muhammad Ahsan</creatorcontrib><creatorcontrib>Kim, Sang Hyeon</creatorcontrib><creatorcontrib>Choi, Su-Hwan</creatorcontrib><creatorcontrib>Kim, Sungmin</creatorcontrib><creatorcontrib>Lee, Sae Youn</creatorcontrib><creatorcontrib>Park, Jin-Seong</creatorcontrib><creatorcontrib>Shim, Jae Won</creatorcontrib><title>Undoped tin dioxide transparent electrodes for efficient and cost-effective indoor organic photovoltaics (SnO2electrode for indoor organic photovoltaics)</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>Indoor organic photovoltaics (OPVs) are currently being investigated for small-scale energy generation from artificial light sources to power small electronic devices. Despite recent progress in increasing the power conversion efficiency (PCE) of indoor OPVs, the widespread use of expensive indium tin oxide (ITO) as a transparent conducting electrode (TCE) leads to long energy payback times. This study provides a novel and comprehensive description of low-temperature atomic layer deposition (ALD)-processed indium-free tin dioxide (SnO 2 ) films as inexpensive and efficient TCEs for indoor OPVs. These highly conformal and defect-free ALD-fabricated SnO 2 films are applied to a poly(3-hexylthiophene):indene-C 60 bisadduct-based OPV system. Under 1 sun illumination, an OPV with an SnO 2 TCE exhibits limited operational capacity because of the high sheet resistance (~98 Ω sq −1 ) of the SnO 2 layers. However, under a light-emitting diode (LED) lamp with a luminance of 1000 lx, the series resistance, which is related to the sheet resistance, has a marginal effect on the performance of the indoor OPV system, showing a PCE of 14.6 ± 0.3%. A reference OPV with an ITO TCE has a slightly lower PCE of 13.3 ± 0.8% under the same LED conditions. These results suggest that SnO 2 TCEs can be efficient and cost-effective replacements for ITO TCEs in indoor OPV systems. Indium-free un-doped tin dioxide (SnO 2 ) serves as a transparent conducting electrode for indoor organic photovoltaics (OPVs). SnO 2 OPV systems demonstrate superior indoor performance compared with indium tin oxide (ITO)-based systems. SnO 2 -based OPV systems shows 14.6% efficiency under 1000 lx of LED illumination. Low-cost SnO 2 can be a promising substitute for expensive ITOs in indoor OPV systems.</description><subject>132/122</subject><subject>639/166/987</subject><subject>639/766/1130</subject><subject>Atomic layer epitaxy</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Dioxides</subject><subject>Electrical resistivity</subject><subject>Electronic devices</subject><subject>Energy conversion efficiency</subject><subject>Energy Systems</subject><subject>Illumination</subject><subject>Indene</subject><subject>Indium tin oxides</subject><subject>Light emitting diodes</subject><subject>Light sources</subject><subject>Low temperature</subject><subject>Luminance</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Photovoltaic cells</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>System effectiveness</subject><subject>Thin Films</subject><subject>Tin</subject><subject>Tin dioxide</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kbtOwzAUhiMEElXpCzBZYoEh4FviZEQVN6lSB8psOb4UV8UOtlvBo_C2uA0qW6djHX__d4a_KC4RvEWQNHeRIopZCTEqISQIlvikGKGmoSWFFTs9vGl7XkxiXEEIUV3TpqKj4ufNKd9rBZJ1QFn_ZZUGKQgXexG0S0CvtUzBKx2B8QFoY6y0uw_hFJA-pjKvMmK3GtjsyowPS-GsBP27T37r10lYGcH1q5vjg20vO8bfXBRnRqyjnvzNcbF4fFhMn8vZ_Ollej8rJYU4laxuUL7fVazSqCKqxnVjDFNSdbVgDKkOkUYh03ZIMCXauu1ETQihrEJMUTIurgZtH_znRsfEV34TXL7IcYUxbRmlJFN4oGTwMQZteB_shwjfHEG-K4EPJfBcAt-XwHEOkSEUM-yWOvyrj6R-AdSzjbk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lee, Jung-Hoon</creator><creator>You, Young-Jun</creator><creator>Saeed, Muhammad Ahsan</creator><creator>Kim, Sang Hyeon</creator><creator>Choi, Su-Hwan</creator><creator>Kim, Sungmin</creator><creator>Lee, Sae Youn</creator><creator>Park, Jin-Seong</creator><creator>Shim, Jae Won</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9070-5666</orcidid><orcidid>https://orcid.org/0000-0001-8387-160X</orcidid></search><sort><creationdate>2021</creationdate><title>Undoped tin dioxide transparent electrodes for efficient and cost-effective indoor organic photovoltaics (SnO2electrode for indoor organic photovoltaics)</title><author>Lee, Jung-Hoon ; You, Young-Jun ; Saeed, Muhammad Ahsan ; Kim, Sang Hyeon ; Choi, Su-Hwan ; Kim, Sungmin ; Lee, Sae Youn ; Park, Jin-Seong ; Shim, Jae Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7681fecb575e153d6268ff7dcdb6a771db138d1f9b1a7da969ba633347517d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>132/122</topic><topic>639/166/987</topic><topic>639/766/1130</topic><topic>Atomic layer epitaxy</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Dioxides</topic><topic>Electrical resistivity</topic><topic>Electronic devices</topic><topic>Energy conversion efficiency</topic><topic>Energy Systems</topic><topic>Illumination</topic><topic>Indene</topic><topic>Indium tin oxides</topic><topic>Light emitting diodes</topic><topic>Light sources</topic><topic>Low temperature</topic><topic>Luminance</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Photovoltaic cells</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>System effectiveness</topic><topic>Thin Films</topic><topic>Tin</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jung-Hoon</creatorcontrib><creatorcontrib>You, Young-Jun</creatorcontrib><creatorcontrib>Saeed, Muhammad Ahsan</creatorcontrib><creatorcontrib>Kim, Sang Hyeon</creatorcontrib><creatorcontrib>Choi, Su-Hwan</creatorcontrib><creatorcontrib>Kim, Sungmin</creatorcontrib><creatorcontrib>Lee, Sae Youn</creatorcontrib><creatorcontrib>Park, Jin-Seong</creatorcontrib><creatorcontrib>Shim, Jae Won</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jung-Hoon</au><au>You, Young-Jun</au><au>Saeed, Muhammad Ahsan</au><au>Kim, Sang Hyeon</au><au>Choi, Su-Hwan</au><au>Kim, Sungmin</au><au>Lee, Sae Youn</au><au>Park, Jin-Seong</au><au>Shim, Jae Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Undoped tin dioxide transparent electrodes for efficient and cost-effective indoor organic photovoltaics (SnO2electrode for indoor organic photovoltaics)</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2021</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><artnum>43</artnum><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>Indoor organic photovoltaics (OPVs) are currently being investigated for small-scale energy generation from artificial light sources to power small electronic devices. Despite recent progress in increasing the power conversion efficiency (PCE) of indoor OPVs, the widespread use of expensive indium tin oxide (ITO) as a transparent conducting electrode (TCE) leads to long energy payback times. This study provides a novel and comprehensive description of low-temperature atomic layer deposition (ALD)-processed indium-free tin dioxide (SnO 2 ) films as inexpensive and efficient TCEs for indoor OPVs. These highly conformal and defect-free ALD-fabricated SnO 2 films are applied to a poly(3-hexylthiophene):indene-C 60 bisadduct-based OPV system. Under 1 sun illumination, an OPV with an SnO 2 TCE exhibits limited operational capacity because of the high sheet resistance (~98 Ω sq −1 ) of the SnO 2 layers. However, under a light-emitting diode (LED) lamp with a luminance of 1000 lx, the series resistance, which is related to the sheet resistance, has a marginal effect on the performance of the indoor OPV system, showing a PCE of 14.6 ± 0.3%. A reference OPV with an ITO TCE has a slightly lower PCE of 13.3 ± 0.8% under the same LED conditions. These results suggest that SnO 2 TCEs can be efficient and cost-effective replacements for ITO TCEs in indoor OPV systems. Indium-free un-doped tin dioxide (SnO 2 ) serves as a transparent conducting electrode for indoor organic photovoltaics (OPVs). SnO 2 OPV systems demonstrate superior indoor performance compared with indium tin oxide (ITO)-based systems. SnO 2 -based OPV systems shows 14.6% efficiency under 1000 lx of LED illumination. Low-cost SnO 2 can be a promising substitute for expensive ITOs in indoor OPV systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41427-021-00310-2</doi><orcidid>https://orcid.org/0000-0002-9070-5666</orcidid><orcidid>https://orcid.org/0000-0001-8387-160X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1884-4049
ispartof NPG Asia materials, 2021, Vol.13 (1), Article 43
issn 1884-4049
1884-4057
language eng
recordid cdi_proquest_journals_2522497443
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access; Free Full-Text Journals in Chemistry
subjects 132/122
639/166/987
639/766/1130
Atomic layer epitaxy
Biomaterials
Chemistry and Materials Science
Dioxides
Electrical resistivity
Electronic devices
Energy conversion efficiency
Energy Systems
Illumination
Indene
Indium tin oxides
Light emitting diodes
Light sources
Low temperature
Luminance
Materials Science
Optical and Electronic Materials
Photovoltaic cells
Structural Materials
Surface and Interface Science
System effectiveness
Thin Films
Tin
Tin dioxide
title Undoped tin dioxide transparent electrodes for efficient and cost-effective indoor organic photovoltaics (SnO2electrode for indoor organic photovoltaics)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Undoped%20tin%20dioxide%20transparent%20electrodes%20for%20efficient%20and%20cost-effective%20indoor%20organic%20photovoltaics%20(SnO2electrode%20for%20indoor%20organic%20photovoltaics)&rft.jtitle=NPG%20Asia%20materials&rft.au=Lee,%20Jung-Hoon&rft.date=2021&rft.volume=13&rft.issue=1&rft.artnum=43&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-021-00310-2&rft_dat=%3Cproquest_cross%3E2522497443%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-7681fecb575e153d6268ff7dcdb6a771db138d1f9b1a7da969ba633347517d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522497443&rft_id=info:pmid/&rfr_iscdi=true